967,846 research outputs found

    Electron Transfer in Porphyrin Complexes in Different Solvents

    Full text link
    The electron transfer in different solvents is investigated for systems consisting of donor, bridge and acceptor. It is assumed that vibrational relaxation is much faster than the electron transfer. Electron transfer rates and final populations of the acceptor state are calculated numerically and in an approximate fashion analytically. In wide parameter regimes these solutions are in very good agreement. The theory is applied to the electron transfer in H2PZnPQ{\rm H_2P-ZnP-Q} with free-base porphyrin (H2P{\rm H_2P}) being the donor, zinc porphyrin (ZnP{\rm ZnP}) the bridge, and quinone (Q{\rm Q}) the acceptor. It is shown that the electron transfer rates can be controlled efficiently by changing the energy of the bridging level which can be done by changing the solvent. The effect of the solvent is determined for different models.Comment: 28 pages + 5 figures, submitted to J. Phys. Chem. For more details see the Ph. D. thesis in quant-ph archive http://xxx.lanl.gov/abs/quant-ph/000100

    Optimal Control for Electron Shuttling

    Full text link
    In this paper we apply an optimal control technique to derive control fields that transfer an electron between ends of a chain of donors or quantum dots. We formulate the transfer as an optimal steering problem, and then derive the dynamics of the optimal control. A numerical algorithm is developed to effectively generate control pulses. We apply this technique to transfer an electron between sites of a triple quantum dot and an ionized chain of phosphorus dopants in silicon. Using the optimal pulses for the spatial shuttling of phosphorus dopants, we then add hyperfine interactions to the Hamiltonian and show that a 500 G magnetic field will transfer the electron spatially as well as transferring the spin components of two of the four hyperfine states of the electron-nuclear spin pair.Comment: 9 pages, 3 figure

    Single-molecule interfacial electron transfer dynamics manipulated by external electric current

    Full text link
    Interfacial electron transfer (IET) dynamics in 1,1'-dioctadecyl-3, 3, 3', 3'-tetramethylindodicarbocyanine (DiD) dye molecules / indium tin oxide (ITO) film system have been probed at the ensemble and single-molecule level by recording the change of fluorescence emission intensity. By comparing the difference of the external electric current (EEC) dependence of lifetime and intensity for enambles and single molecules, it is shown that the single-molecule probe can effcienly demonstrate the IET dynamics. The backward electron transfer and electron transfer of ground state induce the single molecules fluorescence quenching when an EEC is applied to ITO film.Comment: 6 pages, 6 figure

    Path Integral Approach to the Non-Relativistic Electron Charge Transfer

    Get PDF
    A path integral approach has been generalized for the non-relativistic electron charge transfer processes. The charge transfer - the capture of an electron by an ion passing another atom or more generally the problem of rearrangement collisions is formulated in terms of influence functionals. It has been shown that the electron charge transfer process can be treated either as electron transition problem or as elastic scattering of ion and atom in the some effective potential field. The first-order Born approximation for the electron charge transfer cross section has been reproduced to prove the adequacy of the path integral approach for this problem.Comment: 19 pages, 1 figure, to appear in Journal of Physics B: Atomic, Molecular & Optical, vol.34, 200

    Energy Transfer Rate in Double-Layer Graphene Systems: Linear Regime

    Full text link
    We investigate theoretically the energy transfer phenomenon in a double-layer graphene (DLG) system in which two layers are coupled due to the Coulomb interlayer interaction without appreciable interlayer tunneling. We use the balance equation approach and the dynamic and temperature dependent random phase approximation (RPA) screening function in our calculations to obtain the rates of energy transfer between two graphene layers at different layer electron temperatures, densities and interlayer spacings and compare the results with those calculated for the conventional double-layer two-dimensional electron gas (2DEG) systems. In addition, we study the effect of changing substrate dielectric constant on the rate of energy transfer. The general behavior of the energy transfer rate in the DLG is qualitatively similar to that obtained in the double-layer 2DEG but quantitatively its DLG values are an order of magnitude greater. Also, at large electron temperature differences between two layers, the electron density dependence of the energy transfer for the DLG system is significantly different from that found for the double-layer 2DEG system, particularly in case of unequal layer electron densities.Comment: 12 pages,4 figure

    Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity

    Get PDF
    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via β-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from −1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = −1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron−dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide π* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed

    Sub-cycle time resolution of multi-photon momentum transfer in strong-field ionization

    Full text link
    During multi-photon ionization of an atom it is well understood how the involved photons transfer their energy to the ion and the photoelectron. However, the transfer of the photon linear momentum is still not fully understood. Here, we present a time-resolved measurement of linear momentum transfer along the laser pulse propagation direction. Beyond the limit of the electric dipole approximation we observe a time-dependent momentum transfer. We can show that the time-averaged photon radiation pressure picture is not generally applicable and the linear momentum transfer to the photoelectron depends on the ionization time within the electromagnetic wave cycle using the attoclock technique. We can mostly explain the measured linear momentum transfer within a classical model for a free electron in a laser field. However, corrections are required due to the interaction of the outgoing photoelectron with the parent ion and due to the initial momentum when the electron appears in the continuum. The parent ion interaction induces a measurable negative attosecond time delay between the appearance in the continuum of the electron with minimal linear momentum transfer and the point in time with maximum ionization rate
    corecore