9 research outputs found

    A Steerable and Electromagnetically Tracked Catheter: Navigation Performance Compared With Image Fusion in a Swine Model

    Get PDF
    Purpose: Cannulation of visceral vessels is necessary during fenestrated and branched endovascular aortic repair. In an attempt to reduce the associated radiation and contrast dose, an electromagnetically (EM) trackable and manually steerable catheter has been developed. The purpose of this preclinical swine study was to evaluate the cannulation performance and compare the cannulation performance using either EM tracking or image fusion as navigation tools. Materials and Methods: Both renal arteries, the superior mesenteric artery, and the celiac trunk were attempted to be cannulated using a 7F steerable, EM trackable catheter in 3 pigs. Seven operators attempted cannulation using first 3-dimensional (3D) image navigation with EM tracking and then conventional image fusion guidance. The rate of successful cannulation was recorded, as well as procedure time and radiation exposure. Due to the lack of an EM trackable guidewire, cannulations that required more than 1 attempt were attempted only with image fusion. The EM tracking position data were registered to preoperative 3D images using a vessel-based registration algorithm. Results: A total of 72 cannulations were attempted with both methods, and 79% (57) were successful on the first attempt for both techniques. There was no difference in cannulation rate (p=1), and time-use was similar. Successful cannulation with image fusion was achieved in 97% of cases when multiple attempts were allowed. Conclusion: This study demonstrated the feasibility of a steerable and EM trackable catheter with 3D image navigation. Navigation performance with EM tracking was similar to image fusion, without statistically significant differences in cannulation rates and procedure times. Further studies are needed to demonstrate this utility in patients with aortic disease.publishedVersio

    Peripheral tumour targeting using open-source virtual bronchoscopy with electromagnetic tracking: a multi-user pre-clinical study

    Get PDF
    Objectives: The goal was to demonstrate the utility of open-source tracking and visualisation tools in the targeting of lung cancer. Material and methods: The study demonstrates the first deployment of the Anser electromagnetic (EM) tracking system with the CustusX image-guided interventional research platform to navigate using an endobronchial catheter to injected tumour targets. Live animal investigations validated the deployment and targeting of peripheral tumour models using an innovative tumour marking routine. Results: Novel tumour model deployment was successfully achieved at all eight target sites across two live animal investigations without pneumothorax. Virtual bronchoscopy with tracking successfully guided the tracked catheter to 2–12 mm from the target tumour site. Deployment of a novel marker was achieved at all eight sites providing a reliable measure of targeting accuracy. Targeting accuracy within 10 mm was achieved in 7/8 sites and in all cases, the virtual target distance at marker deployment was within the range subsequently measured with x-ray. Conclusions: Endobronchial targeting of peripheral airway targets is feasible using existing open-source technology. Notwithstanding the shortcomings of current commercial platforms, technological improvements in EM tracking and registration accuracy fostered by open-source technology may provide the impetus for widespread clinical uptake of electromagnetic navigation in bronchoscopy

    A minimally invasive surgical system for 3D ultrasound guided robotic retrieval of foreign bodies from a beating heart

    Get PDF
    The result of various medical conditions and trauma, foreign bodies in the heart pose a serious health risk as they may interfere with cardiovascular function. Particles such as thrombi, bullet fragments, and shrapnel can become trapped in a person's heart after migrating through the venous system, or by direct penetration. The severity of disruption can range from benign to fatal, with associated symptoms including anxiety, fever, cardiac tamponade, hemorrhage, infection, embolism, arrhythmia, and valve dysfunction. Injuries of this nature are common in both civilian and military populations. For symptomatic cases, conventional treatment is removal of the foreign body through open surgery via a median sternotomy, the use of cardiopulmonary bypass, and a wide incision in the heart muscle; these methods incur pronounced perioperative risks and long recovery periods. In order to improve upon the standard of care, we propose an image guided robotic system and a corresponding minimally invasive surgical approach. The system employs a dexterous robotic capture device that can maneuver inside the heart through a small incision. Visualization and guidance within the otherwise occluded internal regions are provided by 3D transesophageal echocardiography (TEE), an emerging form of intraoperative medical imaging used in interventions such as mitral valve repair and device implantation. A robotic approach, as opposed to a manual procedure using rigid instruments, is motivated by the various challenges inherent in minimally invasive surgery, which arise from attempts to perform skilled surgical tasks through small incisions without direct vision. Challenges include reduced dexterity, constrained workspace, limited visualization, and difficult hand-eye coordination, which ultimately lead to poor manipulability. A dexterous robotic end effector with real-time image guidance can help overcome these challenges and potentially improve surgical performance. However promising, such a system and approach require that several technical hurdles be resolved. The foreign body must be automatically tracked as it travels about the dynamic environment of the heart. The erratically moving particle must then be captured using a dexterous robot that moves much more slowly in comparison. Furthermore, retrieval must be performed under 3D ultrasound guidance, amidst the uncertainties presented by both the turbulent flow and by the imaging modality itself. In addressing such barriers, this thesis explores the development of a prototype system capable of retrieving a foreign body from a beating heart, culminating in a set of demonstrative in vitro experiments

    ADVANCED INTRAOPERATIVE IMAGE REGISTRATION FOR PLANNING AND GUIDANCE OF ROBOT-ASSISTED SURGERY

    Get PDF
    Robot-assisted surgery offers improved accuracy, precision, safety, and workflow for a variety of surgical procedures spanning different surgical contexts (e.g., neurosurgery, pulmonary interventions, orthopaedics). These systems can assist with implant placement, drilling, bone resection, and biopsy while reducing human errors (e.g., hand tremors and limited dexterity) and easing the workflow of such tasks. Furthermore, such systems can reduce radiation dose to the clinician in fluoroscopically-guided procedures since many robots can perform their task in the imaging field-of-view (FOV) without the surgeon. Robot-assisted surgery requires (1) a preoperative plan defined relative to the patient that instructs the robot to perform a task, (2) intraoperative registration of the patient to transform the planning data into the intraoperative space, and (3) intraoperative registration of the robot to the patient to guide the robot to execute the plan. However, despite the operational improvements achieved using robot-assisted surgery, there are geometric inaccuracies and significant challenges to workflow associated with (1-3) that impact widespread adoption. This thesis aims to address these challenges by using image registration to plan and guide robot- assisted surgical (RAS) systems to encourage greater adoption of robotic-assistance across surgical contexts (in this work, spinal neurosurgery, pulmonary interventions, and orthopaedic trauma). The proposed methods will also be compatible with diverse imaging and robotic platforms (including low-cost systems) to improve the accessibility of RAS systems for a wide range of hospital and use settings. This dissertation advances important components of image-guided, robot-assisted surgery, including: (1) automatic target planning using statistical models and surgeon-specific atlases for application in spinal neurosurgery; (2) intraoperative registration and guidance of a robot to the planning data using 3D-2D image registration (i.e., an “image-guided robot”) for assisting pelvic orthopaedic trauma; (3) advanced methods for intraoperative registration of planning data in deformable anatomy for guiding pulmonary interventions; and (4) extension of image-guided robotics in a piecewise rigid, multi-body context in which the robot directly manipulates anatomy for assisting ankle orthopaedic trauma

    Étude des paramètres physiques en vue d'applications médicales de l'actionnement magnétique de dispositifs médicaux par un système d'imagerie par résonance magnétique

    Get PDF
    Mécanismes d'actionnement pour dispositifs minimalement invasifs -- Traitements oncologiques par embolisation du foie -- Modélisation du guidage de particules en suspension -- Structure des agrégats magnétiques -- Méthodologie -- Aspects physiques de l'actionnement magnétique par IRM -- Contrôle in vivo d'une bille magnétique par IRM -- Bobines de gradient dédiées à l'actionnement magnétique -- Preuve de concept du principe de guidage de microparticules magnétiques : synthèse de l'article intitulé > -- Retour sur les méthodes d'injection de suspensions de microparticules magnétiques en IRM et amélioration des protocoles et montages -- Étude de l'agrégation de microparticules magnétiques dans le contexte du guidage en IRM : synthèse de l'article intitulé >. Étude du guidage magnétique de microparticules magnétiques agrégées : synthèse de l'article intitulé > -- Préparation au guidage in vivo de particules magnétiques -- Étude des applications de l'actionnement magnétique à la déflexion de guidance force for navigation of magnetic catheters>> -- Magnetic microparticles steering within the constraints of an MRI system : proof of concept of a novel targeting approach -- Dedicated steering coils -- Materials and methods -- Aggregation of magnetic microparticles in the context of MRI actuated targeted therapies -- Magneticdipole-dipole interaction -- MRI steering of aggregating magnetic microparticles for enhanced therapeutic efficacy in cancer targeting -- Model of magnetic steering efficiency -- Préparation au guidage in vivo de particules magnétiques -- Anatomie et paramètres physiologiques -- Choix des particules -- Bobines de gradients -- Quantification de l'efficacité de guidage -- Application of MRI guidance force for navigation of magnetic catheters
    corecore