15,364 research outputs found

    Terahertz rectifyier for integrated image detector

    Get PDF
    We present a new CMOS compatible direct conversion terahertz detector operating at room temperature. The rectenna consists in a truncated conical helix extruded from a planar spiral and connected to a nanometric metallic whisker at one of its edges. The whisker reaches the semiconductor substrate that constitutes the antenna ground plane. The rectifying device can be obtained introducing some simple modifications of the charge storage well in conventional CMOS APS devices, making the proposed solution easy to integrate with existing imaging systems. No need of scaling toward very scaled and costly technological node is required, since the CMOS only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed rectifying junction are reported and discussed

    Learning through play: an educational computer game to introduce radar fundamentals

    Get PDF
    The information exchange has evolved from traditional books to computers and Internet in a few years' time. Our current university students were born in this age: they learn and have fun with different methods as previous generations did. These digital natives enjoy computer games. Thus, designing games for learning some selected topics could be a good teaching strategy for such collective and also for undergraduate university students. This paper describes the development and test of an educational computer game revolving around radar. The objective of the game RADAR Technology is to teach students about the fundamentals of radar, while having fun during the learning experience. Based on the principle that you learn better what you practice, the authors want to induce students to discover a difficult to understand topic by proposing them a different experience, in a format better adapted to their generation skills. The computer game has been tested with actual students and the obtained results seem to be very promising

    Amp\`ere-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    Get PDF
    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional 1+121+\frac{1}{2}-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.Comment: 5 pages, 6 figures; submitted to Applied Physics Letter

    Implementación de una plataforma para tests de inyección de fallos mediante electromagnetismo contra SoCs basados en RISC-V

    Get PDF
    Trabajo de Fin de Grado en Ingeniería Informática, Facultad de Informática UCM, Departamento de Arquitectura de Computadores y Automática, Curso 2021/2022.The market of microcontrollers, CPUs, desktop and server computers has seen both numerous milestones achieved and new challenges arise in the last decade. With the RISCV ISA being introduced in 2010, a new set of possibilities and freedoms was unlocked. However, the overall necessity for security and resilient computers has increased, not only for consumer grade devices, but also for every other field. Hardware is oftentimes one of the most forgotten attack surfaces, due to several reasons like lack of ease-of-access, or the cost of research. In this document, we ask the question: “how well does the RISC-V architecture stand against physical harms?”. We also develop a novel device capable of doing Electromagnetic Fault Injection attacks while being a very affordable solution to build.El mercado de los microcontroladores, CPUs, ordenadores de escritorio y servidores ha alcanzado nuevas cotas y superado numerosos retos técnicos durante la última década. Con la aparición del conjunto de instrucciones RISC-V en 2010, llegó un nuevo mundo de posibilidades y libertades. Sin embargo, la necesidad creciente de ordenadores seguros y confiables también ha aumentado, tanto de cara al consumidor, como en otras partes de la industria. En numerosas ocasiones, los componentes hardware son los grandes olvidados a la hora de evaluar la seguridad de un sistema, debido a razones tales como la dificultad de acceder o manipular estos componentes, o el coste prohibitivo que conlleva modificar e investigar dichas partes. En este trabajo, se plantea la pregunta: «¿Cómo de bien resiste la arquitectura RISC-V frente a peligros físicos?». Para evaluar posibles respuestas, se desarrolla un dispositivo nóvel capaz de llevar a cabo ataques de inyección de fallos mediante electromagnetismo, con énfasis en obtener un dispositivo cuya fabricación sea asequible.Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    A programmable microsystem using system-on-chip for real-time biotelemetry

    Get PDF
    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm × 5 mm silicon chip using a 0.6 μm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm × 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10<sup>-</sup><sup>3</sup> using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power
    corecore