9,684 research outputs found

    Graphene Plasmonics for Terahertz to Mid-Infrared Applications

    Full text link
    In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunabilty, long-lived collective excitation and their extreme light confinement. Here, we review the basic properties of graphene plasmons; their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping pathways. The application space of graphene plasmonics lies in the technologically significant, but relatively unexploited terahertz to mid-infrared regime. We discuss emerging and potential applications, such as modulators, notch filters, polarizers, mid-infrared photodetectors, mid-infrared vibrational spectroscopy, among many others.Comment: Review articl

    Nonradiating Photonics with Resonant Dielectric Nanostructures

    Get PDF
    Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics, while receiving a very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics, and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of the light-matter interaction at the nanoscale. This review paper provides the general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical {\em anapoles} and photonic {\em bound states in the continuum}. We discuss a brief history of these states in optics, their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-QQ resonances, nonlinear wave mixing and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.Comment: 22 pages, 9 figures, review articl

    Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators

    Get PDF
    Plasmons in graphene nanoresonators have many potential applications in photonics and optoelectronics, including room-temperature infrared and terahertz photodetectors, sensors, reflect arrays or modulators1, 2, 3, 4, 5, 6, 7. The development of efficient devices will critically depend on precise knowledge and control of the plasmonic modes. Here, we use near-field microscopy8, 9, 10, 11 between λ0 = 10–12 μm to excite and image plasmons in tailored disk and rectangular graphene nanoresonators, and observe a rich variety of coexisting Fabry–Perot modes. Disentangling them by a theoretical analysis allows the identification of sheet and edge plasmons, the latter exhibiting mode volumes as small as 10−8λ03. By measuring the dispersion of the edge plasmons we corroborate their superior confinement compared with sheet plasmons, which among others could be applied for efficient 1D coupling of quantum emitters12. Our understanding of graphene plasmon images is a key to unprecedented in-depth analysis and verification of plasmonic functionalities in future flatland technologies.Peer ReviewedPostprint (author's final draft

    Plasmonic Metamaterials: Physical Background and Some Technological Applications

    Get PDF
    New technological frontiers appear every year, and few are as intriguing as the field of plasmonic metamaterials (PMMs). These uniquely designed materials use coherent electron oscillations to accomplish an astonishing array of tasks, and they present diverse opportunities in many scientific fields. This paper consists of an explanation of the scientific background of PMMs and some technological applications of these fascinating materials. The physics section addresses the foundational concepts necessary to understand the operation of PMMs, while the technology section addresses various applications, like precise biological and chemical sensors, cloaking devices for several frequency ranges, nanoscale photovoltaics, experimental optical computing components, and superlenses that can surpass the diffraction limit of conventional optics

    Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber

    Full text link
    We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficiency of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.Comment: 14 pages, 7 figures, accepted for publication in Optics Expres

    Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures

    Get PDF
    We review the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices. Localized plasmon resonances occurring in metallic nanoparticles are discussed both for single particles and particle ensembles, focusing on the generation of confined light fields enabling enhancement of Raman-scattering and nonlinear processes. We then survey the basic properties of interface plasmons propagating along flat boundaries of thin metallic films, with applications for waveguiding along patterned films, stripes, and nanowires. Interactions between plasmonic structures and optically active media are also discussed

    Unidirectional and diffractionless surface plasmon-polaritons on three-dimensional nonreciprocal plasmonic platforms

    Get PDF
    Light-matter interactions in conventional nanophotonic structures typically lack directionality. Furthermore, surface waves supported by conventional material substrates do not usually have a preferential direction of propagation, and their wavefront tends to spread as it propagates along the surface, unless the surface or the excitation are properly engineered and structured. In this article, we theoretically demonstrate the possibility of realizing \emph{unidirectional and diffractionless surface-plasmon-polariton modes} on a nonreciprocal platform, namely, a gyrotropic magnetized plasma. Based on a rigorous Green function approach, we provide a comprehensive and systematic analysis of all the available physical mechanisms that may bestow the system with directionality, both in the sense of one-way excitation of surface waves, and in the sense of directive diffractionless propagation along the surface. The considered mechanisms include (i) the effect of strong and weak forms of nonreciprocity, (ii) the elliptic-like or hyperbolic-like topology of the modal dispersion surfaces, and (iii) the source polarization state, with the associated possibility of chiral surface-wave excitation governed by angular-momentum matching. We find that three-dimensional gyrotropic plasmonic platforms support a previously-unnoticed wave-propagation regime that exhibit several of these physical mechanisms simultaneously, allowing us to theoretically demonstrate, for the first time, unidirectional surface-plasmon-polariton modes that propagate as a single ultra-narrow diffractionless beam. We also assess the impact of dissipation and nonlocal effects. Our theoretical findings may enable a new generation of plasmonic structures and devices with highly directional response

    Dielectric nanoantenna as an efficient and ultracompact demultiplexer for surface waves

    Full text link
    Nanoantennas for highly efficient excitation and manipulation of surface waves at nanoscale are key elements of compact photonic circuits. However, previously implemented designs employ plasmonic nanoantennas with high Ohmic losses, relatively low spectral resolution, and complicated lithographically made architectures. Here we propose an ultracompact and simple dielectric nanoantenna (silicon nanosphere) allowing for both directional launching of surface plasmon polaritons on a thin gold film and their demultiplexing with a high spectral resolution. We show experimentally that mutual interference of magnetic and electric dipole moments supported by the dielectric nanoantenna results in opposite propagation of the excited surface waves whose wavelengths differ by less than 50 nm in the optical range. Broadband reconfigurability of the nanoantennas operational range is achieved simply by varying the diameter of the silicon sphere. Moreover, despite subwavelength size (<λ/3<\lambda/3) of the proposed nanoantennas, they demonstrate highly efficient and directional launching of surface waves both in the forward and backward directions with the measured front-to-back ratio having a contrast of almost two orders of magnitude within a 50 nm spectral band. Our lithography-free design has great potential as highly efficient, low-cost, and ultracompact demultiplexer for advanced photonic circuits.Comment: added relevant references; fixed typos in Supplementary eq. 8,9,1
    corecore