951,113 research outputs found
Response of convection electric fields in the magnetosphere to IMF orientation change
[1] The transient response of convection electric fields in the inner magnetosphere to southward turning of the interplanetary magnetic field (IMF) is investigated using in‐situ electric field observations by the CRRES and Akebono spacecraft. Electric fields earthward of the inner edge of the electron plasma sheet show quick responses simultaneously with change in ionospheric electric fields, which indicates the arrival of the first signal related to southward turning. A coordinated observation of the electric field by the CRRES and Akebono spacecraft separated by 5 RE reveals a simultaneous increase in the dawn‐dusk electric field in a wide region of the inner magnetosphere. A quick response associated with the southward turning of the IMF is also identified in in‐situ magnetic fields. It indicates that the southward turning of the IMF initiates simultaneous (less than 1 min) enhancements of ionospheric electric fields, convection electric fields in the inner magnetosphere, and the ring or tail current and region 2 FACs. In contrast, a quick response of convection electric fields is not identified in the electron plasma sheet. A statistical study using 161 events of IMF orientation change in 1991 confirms a prompt response within 5 min for 80% of events earthward of the electron plasma sheet, while a large time lag of more than 30 min is identified in electric fields in the electron plasma sheet. The remarkable difference in the response of electric fields indicates that electric fields in the electron plasma sheet are weakened by high conductance in the magnetically conjugated auroral ionosphere.https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014277Published versio
Quantum motion in superposition of Aharonov-Bohm with some additional electromagnetic fields
The structure of additional electromagnetic fields to the Aharonov-Bohm
field, for which the Schr\"odinger, Klein-Gordon, and Dirac equations can be
solved exactly are described and the corresponding exact solutions are found.
It is demonstrated that aside from the known cases (a constant and uniform
magnetic field that is parallel to the Aharonov-Bohm solenoid, a static
spherically symmetrical electric field, and the field of a magnetic monopole),
there are broad classes of additional fields. Among these new additional fields
we have physically interesting electric fields acting during a finite time, or
localized in a restricted region of space. There are additional time-dependent
uniform and isotropic electric fields that allow exact solutions of the
Schrodinger equation. In the relativistic case there are additional electric
fields propagating along the Aharonov-Bohm solenoid with arbitrary electric
pulse shape
Scattering polarization of hydrogen lines in the presence of turbulent electric fields
We study the broadband polarization of hydrogen lines produced by scattering
of radiation, in the presence of isotropic electric fields. In this paper, we
focus on two distinct problems: a) the possibility of detecting the presence of
turbulent electric fields by polarimetric methods, and b) the influence of such
fields on the polarization due to a macroscopic, deterministic magnetic field.
We found that isotropic electric fields decrease the degree of linear
polarization in the scattered radiation, with respect to the zero-field case.
On the other hand, a distribution of isotropic electric fields superimposed
onto a deterministic magnetic field can generate a significant increase of the
degree of magnetic-induced, net circular polarization. This phenomenon has
important implications for the diagnostics of magnetic fields in plasmas using
hydrogen lines, because of the ubiquitous presence of the Holtsmark,
microscopic electric field from neighbouring ions. In particular, previous
solar magnetographic studies of the Balmer lines of hydrogen may need to be
revised because they neglected the effect of turbulent electric fields on the
polarization signals. In this work, we give explicit results for the
Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure
Continuous cell lysis in microfluidics through acoustic and optoelectronic tweezers
A versatile platform for efficient cell lysis using a combination of acoustic and
electric fields in a microchannel is presented. Cell membrane disruption is triggered by
electric fields inducing electroporation and then lysis. The principle of optoelectronic
tweezers (OET) is applied to control the electric field strength and a surface acoustic wave
transducer is attached to an OET chip to implement acoustic tweezing (AT). The system is
characterized in terms of spatial control of electric fields, single cell precision and lysi
The dual Meissner effect in SU(2) Landau gauge
The dual Meissner effect is observed without monopoles in quenched SU(2) QCD
with Landau gauge-fixing. Abelian as well as non-Abelian electric fields are
squeezed. Magnetic displacement currents which are time-dependent Abelian
magnetic fields play a role of solenoidal currents squeezing Abelian electric
fields. Monopoles are not always necessary to the dual Meissner effect. The
squeezing of the electric flux means the dual London equation and the
massiveness of the Abelian electric fields as an asymptotic field. The mass
generation of the Abelian electric fields is related to a gluon condensate
of mass dimension 2.Comment: 10 page, 12 Postscript figures, Talk presented at Quark Confinement
and the Hadron Spectrum VI 2004, Sardinia, 21-25 Sep 200
The Dual Meissner Effect and Magnetic Displacement Currents
The dual Meissner effect is observed without monopoles in quenched
QCD with Landau gauge-fixing. Magnetic displacement currents which are
time-dependent Abelian magnetic fields play a role of solenoidal currents
squeezing Abelian electric fields. Monopoles are not always necessary to the
dual Meissner effect. The squeezing of the electric flux means the dual London
equation and the massiveness of the Abelian electric fields as an asymptotic
field. The mass generation of the Abelian electric fields is related to a gluon
condensate of mass dimension 2.Comment: 4 pages, 5 Postscript figures, title modified, some references added,
minor changes made ; Accepted for publication in Phys.Rev.Let
- …
