137 research outputs found

    NanoMagnet Logic: an Architectural Viewpoint

    Get PDF
    Among the possible implementation of Field- Coupled devices NanoMagnet Logic is attractive for its low power consumption and the possibility to combine memory and logic in the same device. However, the nature of these technologies is so different from CMOS transistors that the implications on the circuit architecture must be taken carefully into account. In this work we analyze the most important issues related to the design of complex circuits using this technology. We discuss how they influence the architectural level. We propose detailed solutions to solve these problems and to improve the overall performance. As a result of this analysis the type of circuits and applications that constitute the best target for this technology are identified. The analysis is performed on NanoMagnet Logic but the results can be applied to any QCA technolog

    Electron Spin for Classical Information Processing: A Brief Survey of Spin-Based Logic Devices, Gates and Circuits

    Full text link
    In electronics, information has been traditionally stored, processed and communicated using an electron's charge. This paradigm is increasingly turning out to be energy-inefficient, because movement of charge within an information-processing device invariably causes current flow and an associated dissipation. Replacing charge with the "spin" of an electron to encode information may eliminate much of this dissipation and lead to more energy-efficient "green electronics". This realization has spurred significant research in spintronic devices and circuits where spin either directly acts as the physical variable for hosting information or augments the role of charge. In this review article, we discuss and elucidate some of these ideas, and highlight their strengths and weaknesses. Many of them can potentially reduce energy dissipation significantly, but unfortunately are error-prone and unreliable. Moreover, there are serious obstacles to their technological implementation that may be difficult to overcome in the near term. This review addresses three constructs: (1) single devices or binary switches that can be constituents of Boolean logic gates for digital information processing, (2) complete gates that are capable of performing specific Boolean logic operations, and (3) combinational circuits or architectures (equivalent to many gates working in unison) that are capable of performing universal computation.Comment: Topical Revie
    • 

    corecore