1,053 research outputs found

    ELABORATIVE AND CRITICAL DIALOG: TWO POTENTIALLY EFFECTIVE PROBLEM-SOLVING AND LEARNING INTERACTIONS

    Get PDF
    Recent research on learning individual monologs and collaborative problem solving suggests that students learn best when they are required to be active participants in interactive dialogs. However, some interactive dialogs are more conducive to learning than others. Two dialog patterns that seem to be effective in producing successful problem solving and deep learning are elaborative and critical interactions. The goal of the present study is to evaluate the relative impact of each dialog on learning and problem solving by experimentally manipulating the types of conversations in which dyads engage.Undergraduate participants were randomly assigned to one of four conditions: a singleton control, a dyadic control, an elaborative dyad, or a critical dyad. The domain chosen for the experiment was a bridge optimization task in which individuals or dyads modified a simulated bridge, with the goal of making it as inexpensive as possible.Both problem solving and learning from the simulation were assessed. Performance on the task included a combination of two factors: the quality of the design and the price. Overall learning was measured by the gain from pre- to posttest on isomorphic evaluations, and was further decomposed into text-explicit and inferential knowledge. The results suggest elaboration is easier to train and led to stronger problem solving and learning than the control condition, whereas the critical interactions were more difficult to instruct and led to problem solving and learning equal to the control condition

    Coordinating visualizations of polysemous action: Values added for grounding proportion

    Get PDF
    We contribute to research on visualization as an epistemic learning tool by inquiring into the didactical potential of having students visualize one phenomenon in accord with two different partial meanings of the same concept. 22 Grade 4-6 students participated in a design study that investigated the emergence of proportional-equivalence notions from mediated perceptuomotor schemas. Working as individuals or pairs in tutorial clinical interviews, students solved non-symbolic interaction problems that utilized remote-sensing technology. Next, they used symbolic artifacts interpolated into the problem space as semiotic means to objectify in mathematical register a variety of both additive and multiplicative solution strategies. Finally, they reflected on tensions between these competing visualizations of the space. Micro-ethnographic analyses of episodes from three paradigmatic case studies suggest that students reconciled semiotic conflicts by generating heuristic logico-mathematical inferences that integrated competing meanings into cohesive conceptual networks. These inferences hinged on revisualizing additive elements multiplicatively. Implications are drawn for rethinking didactical design for proportions. © 2013 FIZ Karlsruhe

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    Automatic Context-Driven Inference of Engagement in HMI: A Survey

    Full text link
    An integral part of seamless human-human communication is engagement, the process by which two or more participants establish, maintain, and end their perceived connection. Therefore, to develop successful human-centered human-machine interaction applications, automatic engagement inference is one of the tasks required to achieve engaging interactions between humans and machines, and to make machines attuned to their users, hence enhancing user satisfaction and technology acceptance. Several factors contribute to engagement state inference, which include the interaction context and interactants' behaviours and identity. Indeed, engagement is a multi-faceted and multi-modal construct that requires high accuracy in the analysis and interpretation of contextual, verbal and non-verbal cues. Thus, the development of an automated and intelligent system that accomplishes this task has been proven to be challenging so far. This paper presents a comprehensive survey on previous work in engagement inference for human-machine interaction, entailing interdisciplinary definition, engagement components and factors, publicly available datasets, ground truth assessment, and most commonly used features and methods, serving as a guide for the development of future human-machine interaction interfaces with reliable context-aware engagement inference capability. An in-depth review across embodied and disembodied interaction modes, and an emphasis on the interaction context of which engagement perception modules are integrated sets apart the presented survey from existing surveys

    Characterizing the Quality of Insight by Interactions: A Case Study

    Get PDF
    Understanding the quality of insight has become increasingly important with the trend of allowing users to post comments during visual exploration, yet approaches for qualifying insight are rare. This article presents a case study to investigate the possibility of characterizing the quality of insight via the interactions performed. To do this, we devised the interaction of a visualization tool—MediSyn—for insight generation. MediSyn supports five types of interactions: selecting, connecting, elaborating, exploring, and sharing. We evaluated MediSyn with 14 participants by allowing them to freely explore the data and generate insights. We then extracted seven interaction patterns from their interaction logs and correlated the patterns to four aspects of insight quality. The results show the possibility of qualifying insights via interactions. Among other findings, exploration actions can lead to unexpected insights; the drill-down pattern tends to increase the domain values of insights. A qualitative analysis shows that using domain knowledge to guide exploration can positively affect the domain value of derived insights. We discuss the study’s implications, lessons learned, and future research opportunities.Peer reviewe

    Design methodology for smart actuator services for machine tool and machining control and monitoring

    Get PDF
    This paper presents a methodology to design the services of smart actuators for machine tools. The smart actuators aim at replacing the traditional drives (spindles and feed-drives) and enable to add data processing abilities to implement monitoring and control tasks. Their data processing abilities are also exploited in order to create a new decision level at the machine level. The aim of this decision level is to react to disturbances that the monitoring tasks detect. The cooperation between the computational objects (the smart spindle, the smart feed-drives and the CNC unit) enables to carry out functions for accommodating or adapting to the disturbances. This leads to the extension of the notion of smart actuator with the notion of agent. In order to implement the services of the smart drives, a general design is presented describing the services as well as the behavior of the smart drive according to the object oriented approach. Requirements about the CNC unit are detailed. Eventually, an implementation of the smart drive services that involves a virtual lathe and a virtual turning operation is described. This description is part of the design methodology. Experimental results obtained thanks to the virtual machine are then presented

    A Digital Practice Tool for Chemical Resonance

    Get PDF
    Digital practice tools support online learning in math, language, computer science, and other subjects, but practice with problems whose answers are not well represented by text or quantities is underrepresented in the digital learning ecosystem beyond multiple-choice questions. This thesis project explored an alternative to multiple choice practice problems in organic chemistry that does not rely on a molecule drawing interface. This project included development and evaluation of a proof-of-concept digital practice tool for chemical resonance problems. Results of a utility study strongly suggest that the practice tool could fill a learning niche within organic chemistry practice as part of a larger integrated learning environment. The study supported the idea that the digital practice tool and others like it can meet different needs for certain learners, such as reinforcing concepts visually, allowing learners to pace themselves, encouraging learners, and providing immediate feedback. Lastly, this project identified generalizable design challenges for similar practice tools, including the need for a known deployment context, curating content for diverse learner backgrounds, and managing appropriate difficulty for diverse learner backgrounds and needs

    Empirical Evaluation of ASOME Tool Usage

    Get PDF

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings
    corecore