3 research outputs found

    Eikonal Model Personalisation using Invasive Data to Predict Cardiac Resynchronisation Therapy Electrophysiological Response

    Get PDF
    International audienceIn this manuscript, we personalise an Eikonal model of cardiac wave front propagation using data acquired during an invasive electro-physiological study. To this end, we use a genetic algorithm to determine the parameters that provide the best fit between simulated and recorded activation maps during sinus rhythm. We propose a way to parameterise the Eikonal simulations that take into account the Purkinje network and the septomarginal trabecula influences while keeping the computational cost low. We then re-use these parameters to predict the cardiac resynchronisation therapy electrophysiological response by adapting the simulation initialisation to the pacing locations. We experiment different divisions of the myocardium on which the propagation velocities have to be optimised. We conclude that separating both ventricles and both endocardia seems to provide a reasonable personalisation framework in terms of accuracy and predictive power

    Inference of ventricular activation properties from non-invasive electrocardiography

    Full text link
    The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of individual patients' cardiac function to inform therapeutic and diagnostic decision-making. The electrocardiogram (ECG) is the most widely used clinical tool for cardiac diagnosis. Its interpretation is, however, confounded by functional and anatomical variability in heart and torso. In this study, we develop new computational techniques to estimate key ventricular activation properties for individual subjects by exploiting the synergy between non-invasive electrocardiography and image-based torso-biventricular modelling and simulation. More precisely, we present an efficient sequential Monte Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations and torso-biventricular models constructed based on clinical cardiac magnetic resonance (CMR) imaging. The method also includes a novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) parameter spaces, and an efficient dynamic time warping-based ECG comparison algorithm. We demonstrate results from our inference method on a cohort of twenty virtual subjects with cardiac volumes ranging from 74 cm3 to 171 cm3 and considering low versus high resolution for the endocardial discretisation (which determines possible locations of the earliest activation sites). Results show that our method can successfully infer the ventricular activation properties from non-invasive data, with higher accuracy for earliest activation sites, endocardial speed, and sheet (transmural) speed in sinus rhythm, rather than the fibre or sheet-normal speeds.Comment: Submitted to Medical Image Analysi

    Eikonal Model Personalisation using Invasive Data to Predict Cardiac Resynchronisation Therapy Electrophysiological Response

    Get PDF
    International audienceIn this manuscript, we personalise an Eikonal model of cardiac wave front propagation using data acquired during an invasive electro-physiological study. To this end, we use a genetic algorithm to determine the parameters that provide the best fit between simulated and recorded activation maps during sinus rhythm. We propose a way to parameterise the Eikonal simulations that take into account the Purkinje network and the septomarginal trabecula influences while keeping the computational cost low. We then re-use these parameters to predict the cardiac resynchronisation therapy electrophysiological response by adapting the simulation initialisation to the pacing locations. We experiment different divisions of the myocardium on which the propagation velocities have to be optimised. We conclude that separating both ventricles and both endocardia seems to provide a reasonable personalisation framework in terms of accuracy and predictive power
    corecore