6,701 research outputs found

    Integrability of two-loop dilatation operator in gauge theories

    Full text link
    We study the two-loop dilatation operator in the noncompact SL(2) sector of QCD and supersymmetric Yang-Mills theories with N=1,2,4 supercharges. The analysis is performed for Wilson operators built from three quark/gaugino fields of the same helicity belonging to the fundamental/adjoint representation of the SU(3)/SU(N_c) gauge group and involving an arbitrary number of covariant derivatives projected onto the light-cone. To one-loop order, the dilatation operator inherits the conformal symmetry of the classical theory and is given in the multi-color limit by a local Hamiltonian of the Heisenberg magnet with the spin operators being generators of the collinear subgroup of full (super)conformal group. Starting from two loops, the dilatation operator depends on the representation of the gauge group and, in addition, receives corrections stemming from the violation of the conformal symmetry. We compute its eigenspectrum and demonstrate that to two-loop order integrability survives the conformal symmetry breaking in the aforementioned gauge theories, but it is violated in QCD by the contribution of nonplanar diagrams. In SYM theories with extended supersymmetry, the N-dependence of the two-loop dilatation operator can be factorized (modulo an additive normalization constant) into a multiplicative c-number. This property makes the eigenspectrum of the two-loop dilatation operator alike in all gauge theories including the maximally supersymmetric theory. Our analysis suggests that integrability is only tied to the planar limit and it is sensitive neither to conformal symmetry nor supersymmetry.Comment: 70 pages, 10 figure

    The Lorentz Integral Transform (LIT) method and its applications to perturbation induced reactions

    Full text link
    The LIT method has allowed ab initio calculations of electroweak cross sections in light nuclear systems. This review presents a description of the method from both a general and a more technical point of view, as well as a summary of the results obtained by its application. The remarkable features of the LIT approach, which make it particularly efficient in dealing with a general reaction involving continuum states, are underlined. Emphasis is given on the results obtained for electroweak cross sections of few--nucleon systems. Their implications for the present understanding of microscopic nuclear dynamics are discussed.Comment: 83 pages, 31 figures. Topical review. Corrected typo

    A Note On Boundary Conditions In Euclidean Gravity

    Full text link
    We review what is known about boundary conditions in General Relativity on a spacetime of Euclidean signature. The obvious Dirichlet boundary condition, in which one specifies the boundary geometry, is actually not elliptic and in general does not lead to a well-defined perturbation theory. It is better-behaved if the extrinsic curvature of the boundary is suitably constrained, for instance if it is positive- or negative-definite. A different boundary condition, in which one specifies the conformal geometry of the boundary and the trace of the extrinsic curvature, is elliptic and always leads formally to a satisfactory perturbation theory. These facts might have interesting implications for semiclassical approaches to quantum gravity. (Submitted to a volume in honor of Roman Jackiw.)Comment: 26 pp. Dedication added to Roman Jackiw. Minor corrections in this versio

    Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation

    Full text link
    In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large scale perturbations of a periodic wave train, with numerical time evolution studies, demonstrating their effectiveness at a practical level. For the reader's convenience, we include in an appendix the corresponding treatment of the Swift-Hohenberg equation, a nonconservative counterpart of the generalized Kuramoto-Sivashinsky equation for which the nonlinear stability analysis is considerably simpler, together with numerical Evans function analyses extending spectral stability analyses of Mielke and Schneider.Comment: 78 pages, 11 figure

    Parity flow as Z2{\mathbb Z}_2-valued spectral flow

    Full text link
    This note is about the topology of the path space of linear Fredholm operators on a real Hilbert space. Fitzpatrick and Pejsachowicz introduced the parity of such a path, based on the Leray-Schauder degree of a path of parametrices. Here an alternative analytic approach is presented which reduces the parity to the Z2{\mathbb Z}_2-valued spectral flow of an associated path of chiral skew-adjoints. Furthermore the related notion of Z2{\mathbb Z}_2-index of a Fredholm pair of chiral complex structures is introduced and connected to the parity of a suitable path. Several non-trivial examples are provided. One of them concerns topological insulators, another an application to the bifurcation of a non-linear partial differential equation.Comment: numerous improvements, title change
    • …
    corecore