24 research outputs found

    On the Spectrum of the Derangement Graph

    Get PDF
    We derive several interesting formulae for the eigenvalues of the derangement graph and use them to settle affirmatively a conjecture of Ku regarding the least eigenvalue

    A Proof of the Cameron-Ku conjecture

    Full text link
    A family of permutations A \subset S_n is said to be intersecting if any two permutations in A agree at some point, i.e. for any \sigma, \pi \in A, there is some i such that \sigma(i)=\pi(i). Deza and Frankl showed that for such a family, |A| <= (n-1)!. Cameron and Ku showed that if equality holds then A = {\sigma \in S_{n}: \sigma(i)=j} for some i and j. They conjectured a `stability' version of this result, namely that there exists a constant c < 1 such that if A \subset S_{n} is an intersecting family of size at least c(n-1)!, then there exist i and j such that every permutation in A maps i to j (we call such a family `centred'). They also made the stronger `Hilton-Milner' type conjecture that for n \geq 6, if A \subset S_{n} is a non-centred intersecting family, then A cannot be larger than the family C = {\sigma \in S_{n}: \sigma(1)=1, \sigma(i)=i \textrm{for some} i > 2} \cup {(12)}, which has size (1-1/e+o(1))(n-1)!. We prove the stability conjecture, and also the Hilton-Milner type conjecture for n sufficiently large. Our proof makes use of the classical representation theory of S_{n}. One of our key tools will be an extremal result on cross-intersecting families of permutations, namely that for n \geq 4, if A,B \subset S_{n} are cross-intersecting, then |A||B| \leq ((n-1)!)^{2}. This was a conjecture of Leader; it was recently proved for n sufficiently large by Friedgut, Pilpel and the author.Comment: Updated version with an expanded open problems sectio

    Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs

    Full text link
    The (n,k)-arrangement graph A(n,k) is a graph with all the k-permutations of an n-element set as vertices where two k-permutations are adjacent if they agree in exactly k-1 positions. We introduce a cyclic decomposition for k-permutations and show that this gives rise to a very fine equitable partition of A(n,k). This equitable partition can be employed to compute the complete set of eigenvalues (of the adjacency matrix) of A(n,k). Consequently, we determine the eigenvalues of A(n,k) for small values of k. Finally, we show that any eigenvalue of the Johnson graph J(n,k) is an eigenvalue of A(n,k) and that -k is the smallest eigenvalue of A(n,k) with multiplicity O(n^k) for fixed k.Comment: 18 pages. Revised version according to a referee suggestion
    corecore