113 research outputs found

    Spectrum sensing by cognitive radios at very low SNR

    Full text link
    Spectrum sensing is one of the enabling functionalities for cognitive radio (CR) systems to operate in the spectrum white space. To protect the primary incumbent users from interference, the CR is required to detect incumbent signals at very low signal-to-noise ratio (SNR). In this paper, we present a spectrum sensing technique based on correlating spectra for detection of television (TV) broadcasting signals. The basic strategy is to correlate the periodogram of the received signal with the a priori known spectral features of the primary signal. We show that according to the Neyman-Pearson criterion, this spectral correlation-based sensing technique is asymptotically optimal at very low SNR and with a large sensing time. From the system design perspective, we analyze the effect of the spectral features on the spectrum sensing performance. Through the optimization analysis, we obtain useful insights on how to choose effective spectral features to achieve reliable sensing. Simulation results show that the proposed sensing technique can reliably detect analog and digital TV signals at SNR as low as -20 dB.Comment: IEEE Global Communications Conference 200

    Hard Decision Cooperative Spectrum Sensing Based on Estimating the Noise Uncertainty Factor

    Full text link
    Spectrum Sensing (SS) is one of the most challenging issues in Cognitive Radio (CR) systems. Cooperative Spectrum Sensing (CSS) is proposed to enhance the detection reliability of a Primary User (PU) in fading environments. In this paper, we propose a hard decision based CSS algorithm using energy detection with taking into account the noise uncertainty effect. In the proposed algorithm, two dynamic thresholds are toggled based on predicting the current PU activity, which can be successfully expected using a simple successive averaging process with time. Also, their values are evaluated using an estimated value of the noise uncertainty factor. These dynamic thresholds are used to compensate the noise uncertainty effect and increase (decrease) the probability of detection (false alarm), respectively. Theoretical analysis is performed on the proposed algorithm to deduce its enhanced false alarm and detection probabilities compared to the conventional hard decision CSS. Moreover, simulation analysis is used to confirm the theoretical claims and prove the high performance of the proposed scheme compared to the conventional CSS using different fusion rules.Comment: 5 pages, 4 figures, IEEE International Conference on Computer Engineering and Systems (ICCES 2015). arXiv admin note: text overlap with arXiv:1505.0558

    Sensing Throughput Tradeoff for Cognitive Radio Networks with Noise Variance Uncertainty

    Full text link
    This paper proposes novel spectrum sensing algorithm, and examines the sensing throughput tradeoff for cognitive radio (CR) networks under noise variance uncertainty. It is assumed that there are one white sub-band, and one target sub-band which is either white or non-white. Under this assumption, first we propose a novel generalized energy detector (GED) for examining the target sub-band by exploiting the noise information of the white sub-band, then, we study the tradeoff between the sensing time and achievable throughput of the CR network. To study this tradeoff, we consider the sensing time optimization for maximizing the throughput of the CR network while appropriately protecting the primary network. The sensing time is optimized by utilizing the derived detection and false alarm probabilities of the GED. The proposed GED does not suffer from signal to noise ratio (SNR) wall (i.e., robust against noise variance uncertainty) and outperforms the existing signal detectors. Moreover, the relationship between the proposed GED and conventional energy detector (CED) is quantified analytically. We show that the optimal sensing times with perfect and imperfect noise variances are not the same. In particular, when the frame duration is 2s, and SNR is -20dB, and each of the bandwidths of the white and target sub-bands is 6MHz, the optimal sensing times are 28.5ms and 50.6ms with perfect and imperfect noise variances, respectively.Comment: Accepted in CROWNCOM, June 2014, Oulu, Finlan

    Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing

    Get PDF
    In cognitive radio networks, the licensed frequency bands of the primary users (PUs) are available to the secondary user (SU) provided that they do not cause significant interference to the PUs. In this study, the authors analysed the normalised throughput of the SU with multiple PUs coexisting under any frequency division multiple access communication protocol. The authors consider a cognitive radio transmission where the frame structure consists of sensing and data transmission slots. In order to achieve the maximum normalised throughput of the SU and control the interference level to the legal PUs, the optimal frame length of the SU is found via simulation. In this context, a new analytical formula has been expressed for the achievable normalised throughput of SU with multiple PUs under prefect and imperfect spectrum sensing scenarios. Moreover, the impact of imperfect sensing, variable frame length of SU and the variable PU traffic loads, on the normalised throughput has been critically investigated. It has been shown that the analytical and simulation results are in perfect agreement. The authors analytical results are much useful to determine how to select the frame duration length subject to the parameters of cognitive radio network, such as network traffic load, achievable sensing accuracy and number of coexisting PUs
    • …
    corecore