216,137 research outputs found

    The Largest Laplacian and Signless Laplacian H-Eigenvalues of a Uniform Hypergraph

    Full text link
    In this paper, we show that the largest Laplacian H-eigenvalue of a kk-uniform nontrivial hypergraph is strictly larger than the maximum degree when kk is even. A tight lower bound for this eigenvalue is given. For a connected even-uniform hypergraph, this lower bound is achieved if and only if it is a hyperstar. However, when kk is odd, it happens that the largest Laplacian H-eigenvalue is equal to the maximum degree, which is a tight lower bound. On the other hand, tight upper and lower bounds for the largest signless Laplacian H-eigenvalue of a kk-uniform connected hypergraph are given. For a connected kk-uniform hypergraph, the upper (respectively lower) bound of the largest signless Laplacian H-eigenvalue is achieved if and only if it is a complete hypergraph (respectively a hyperstar). The largest Laplacian H-eigenvalue is always less than or equal to the largest signless Laplacian H-eigenvalue. When the hypergraph is connected, the equality holds here if and only if kk is even and the hypergraph is odd-bipartite.Comment: 26 pages, 3 figure

    New bounds for the max-kk-cut and chromatic number of a graph

    Full text link
    We consider several semidefinite programming relaxations for the max-kk-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-kk-cut when k>2k>2 that is applicable to any graph. This bound is exploited to derive a new eigenvalue bound on the chromatic number of a graph. For regular graphs, the new bound on the chromatic number is the same as the well-known Hoffman bound; however, the two bounds are incomparable in general. We prove that the eigenvalue bound for the max-kk-cut is tight for several classes of graphs. We investigate the presented bounds for specific classes of graphs, such as walk-regular graphs, strongly regular graphs, and graphs from the Hamming association scheme

    Numerical Solution of the Spinless Salpeter Equation by a Semianalytical Matrix Method (a Mathematica 4.0 routine)

    Get PDF
    In quantum theory, the so-called "spinless Salpeter equation," the relativistic generalization of the nonrelativistic Schroedinger equation, is used to describe both bound states of scalar particles and the spin-averaged spectra of bound states of fermions. A numerical procedure solves the spinless Salpeter equation by approximating this eigenvalue equation by a matrix eigenvalue problem with explicitly known matrices.Comment: 7 pages, LaTe

    On condition numbers of polynomial eigenvalue problems with nonsingular leading coefficients

    Full text link
    In this paper, we investigate condition numbers of eigenvalue problems of matrix polynomials with nonsingular leading coefficients, generalizing classical results of matrix perturbation theory. We provide a relation between the condition numbers of eigenvalues and the pseudospectral growth rate. We obtain that if a simple eigenvalue of a matrix polynomial is ill-conditioned in some respects, then it is close to be multiple, and we construct an upper bound for this distance (measured in the euclidean norm). We also derive a new expression for the condition number of a simple eigenvalue, which does not involve eigenvectors. Moreover, an Elsner-like perturbation bound for matrix polynomials is presented.Comment: 4 figure
    corecore