415 research outputs found

    Pinning Complex Networks by a Single Controller

    Full text link
    In this paper, without assuming symmetry, irreducibility, or linearity of the couplings, we prove that a single controller can pin a coupled complex network to a homogenous solution. Sufficient conditions are presented to guarantee the convergence of the pinning process locally and globally. An effective approach to adapt the coupling strength is proposed. Several numerical simulations are given to verify our theoretical analysis

    Effects of the network structural properties on its controllability

    Full text link
    In a recent paper, it has been suggested that the controllability of a diffusively coupled complex network, subject to localized feedback loops at some of its vertices, can be assessed by means of a Master Stability Function approach, where the network controllability is defined in terms of the spectral properties of an appropriate Laplacian matrix. Following that approach, a comparison study is reported here among different network topologies in terms of their controllability. The effects of heterogeneity in the degree distribution, as well as of degree correlation and community structure, are discussed.Comment: Also available online at: http://link.aip.org/link/?CHA/17/03310

    Consensus analysis of multiagent networks via aggregated and pinning approaches

    Get PDF
    This is the post-print version of of the Article - Copyright @ 2011 IEEEIn this paper, the consensus problem of multiagent nonlinear directed networks (MNDNs) is discussed in the case that a MNDN does not have a spanning tree to reach the consensus of all nodes. By using the Lie algebra theory, a linear node-and-node pinning method is proposed to achieve a consensus of a MNDN for all nonlinear functions satisfying a given set of conditions. Based on some optimal algorithms, large-size networks are aggregated to small-size ones. Then, by applying the principle minor theory to the small-size networks, a sufficient condition is given to reduce the number of controlled nodes. Finally, simulation results are given to illustrate the effectiveness of the developed criteria.This work was jointly supported by CityU under a research grant (7002355) and GRF funding (CityU 101109)

    On the pinning strategy of complex networks

    Full text link
    In pinning control of complex networks, a tacit believing is that the system dynamics will be better controlled by pinning the large-degree nodes than the small-degree ones. Here, by changing the number of pinned nodes, we find that, when a significant fraction of the network nodes are pinned, pinning the small-degree nodes could generally have a higher performance than pinning the large-degree nodes. We demonstrate this interesting phenomenon on a variety of complex networks, and analyze the underlying mechanisms by the model of star networks. By changing the network properties, we also find that, comparing to densely connected homogeneous networks, the advantage of the small-degree pinning strategy is more distinct in sparsely connected heterogenous networks
    corecore