17,385 research outputs found

    Doppler effect in the oscillator radiation process in the medium

    Get PDF
    The purpose of this paper is to investigate the radiation process of the charged particle passing through an external periodic field in a dispersive medium. In the optical range of spectrum we will consider two cases: first, the source has not eigenfrequency, and second, the source has eigenfrequency. In the first case, when the Cherenkov radiation occurs, the non-zero eigenfrequency produces a paradox for Doppler effect. It is shown that the absence of the eigenfrequency solves the paradox known in the literature. The question whether the process is normal (i.e. hard photons are being radiated under the small angles) or anomalous depends on the law of the medium dispersion. When the source has an eigenfrequency the Doppler effects can be either normal or anomalous. In the X-ray range of the oscillator radiation spectrum we have two photons radiated under the same angle- soft and hard. In this case the radiation obeys to so-called complicated Doppler effect, i.e. in the soft photon region we have anomalous Doppler effect and in the hard photon region we have normal Doppler effect.Comment: 6 pages, no figure

    Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system

    Get PDF
    The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a non-trivial phase relation between cavity and nanoparticle radiation, allowing back-action via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.Comment: 15 pages, 12 figure

    Dark solitons in cigar-shaped Bose-Einstein condensates in double-well potentials

    Get PDF
    We study the statics and dynamics of dark solitons in a cigar-shaped Bose-Einstein condensate confined in a double-well potential. Using a mean-field model with a non-cubic nonlinearity, appropriate to describe the dimensionality crossover regime from one to three dimensional, we obtain branches of solutions in the form of single- and multiple-dark soliton states, and study their bifurcations and stability. It is demonstrated that there exist dark soliton states which do not have a linear counterpart and we highlight the role of anomalous modes in the excitation spectra. Particularly, we show that anomalous mode eigenfrequencies are closely connected to the characteristic soliton frequencies as found from the solitons' equations of motion, and how anomalous modes are related to the emergence of instabilities. We also analyze in detail the role of the height of the barrier in the double well setting, which may lead to instabilities or decouple multiple dark soliton states.Comment: 35 pages, 12 figure

    Control of the gyration dynamics of magnetic vortices by the magnetoelastic effect

    Get PDF
    The influence of a strain-induced uniaxial magnetoelastic anisotropy on the magnetic vortex core dynamics in microstructured magnetostrictive Co40_{40}Fe40_{40}B20_{20} elements was investigated with time-resolved scanning transmission x-ray microscopy. The measurements revealed a monotonically decreasing eigenfrequency of the vortex core gyration with the increasing magnetoelastic anisotropy, which follows closely the predictions from micromagnetic modeling

    Oscillatory eigenmodes and stability of one and two arbitrary fractional vortices in long Josephson 0-kappa-junctions

    Get PDF
    We investigate theoretically the eigenmodes and the stability of one and two arbitrary fractional vortices pinned at one and two κ\kappa-phase discontinuities in a long Josephson junction. In the particular case of a single κ\kappa-discontinuity, a vortex is spontaneously created and pinned at the boundary between the 0 and κ\kappa-regions. In this work we show that only two of four possible vortices are stable. A single vortex has an oscillatory eigenmode with a frequency within the plasma gap. We calculate this eigenfrequency as a function of the fractional flux carried by a vortex. For the case of two vortices, pinned at two κ\kappa-discontinuities situated at some distance aa from each other, splitting of the eigenfrequencies occur. We calculate this splitting numerically as a function of aa for different possible ground states. We also discuss the presence of a critical distance below which two antiferromagnetically ordered vortices form a strongly coupled ``vortex molecule'' that behaves as a single object and has only one eigenmode.Comment: submitted to Phys. Rev. B (

    Slow modes in Keplerian disks

    Full text link
    Low-mass disks orbiting a massive body can support "slow" normal modes, in which the eigenfrequency is much less than the orbital frequency. Slow modes are lopsided, i.e., the azimuthal wavenumber m=1. We investigate the properties of slow modes, using softened self-gravity as a simple model for collective effects in the disk. We employ both the WKB approximation and numerical solutions of the linear eigenvalue equation. We find that all slow modes are stable. Discrete slow modes can be divided into two types, which we label g-modes and p-modes. The g-modes involve long leading and long trailing waves, have properties determined by the self-gravity of the disk, and are only present in narrow rings or in disks where the precession rate is dominated by an external potential. In contrast, the properties of p-modes are determined by the interplay of self-gravity and other collective effects. P-modes involve both long and short waves, and in the WKB approximation appear in degenerate leading/trailing pairs. Disks support a finite number---sometimes zero---of discrete slow modes, and a continuum of singular modes.Comment: 32 pages, 12 figures. To be published in Astronomical Journa

    Tidal inertial waves in the differentially rotating convective envelopes of low-mass stars - I. Free oscillation modes

    Full text link
    Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convection can sustain differential rotation in their envelope, with an equatorial acceleration (as in the Sun) or deceleration, which can modify the waves' propagation properties. We explore in this first paper the general propagation properties of free linear inertial waves in a differentially rotating homogeneous fluid inside a spherical shell. We assume that the angular velocity background flow depends on the latitudinal coordinate only, close to what is expected in the external convective envelope of low-mass stars. We use i) an analytical approach in the inviscid case to get the dispersion relation, from which we compute the characteristic trajectories along which energy propagates. This allows us to study the existence of attractor cycles and infer the different families of inertial modes; ii) high-resolution numerical calculations based on a spectral method for the viscous problem. We find that modes that propagate in the whole shell (D modes) behave the same way as with solid-body rotation. However, another family of inertial modes exists (DT modes), which can propagate only in a restricted part of the convective zone. Our study shows that they are less common than D modes and that the characteristic rays and shear layers often focus towards a wedge - or point-like attractor. More importantly, we find that for non-axisymmetric oscillation modes, shear layers may cross a corotation resonance with a local accumulation of kinetic energy. Their damping rate scales very differently from what we obtain for standard D modes and we show an example where it is independent of viscosity (Ekman number) in the astrophysical regime in which it is small.Comment: 17 pages, 15 figures, accepted for publication in A&

    Simulation of tail boom vibrations using main rotor-fuselage Computational Fluid Dynamics (CFD)

    Get PDF
    In this work, fully-resolved rotor-fuselage interactional aerodynamics is used as the forcing term in a model based on the Euler-Bernoulli equation, aiming to simulate helicopter tail-boom vibration. The model is based on linear beam analysis and captures the effect of the blade-passing as well as the effect of the changing force direction on the boom. The Computational Fluid Dynamics (CFD) results were obtained using a well-validated helicopter simulation tool. Results for the tail-boom vibration are not validated due to lack of experimental data, but were obtained using an established analytical approach and serve to demonstrate the strong effect of aerodynamics on tail-boom aeroelastic behavior
    corecore