420,692 research outputs found

    EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles

    Get PDF
    Existing sampling-based robot motion planning methods are often inefficient at finding trajectories for kinodynamic systems, especially in the presence of narrow passages between obstacles and uncertainty in control and sensing. To address this, we propose EG-RRT, an Environment-Guided variant of RRT designed for kinodynamic robot systems that combines elements from several prior approaches and may incorporate a cost model based on the LQG-MP framework to estimate the probability of collision under uncertainty in control and sensing. We compare the performance of EG-RRT with several prior approaches on challenging sample problems. Results suggest that EG-RRT offers significant improvements in performance.Postprint (author’s final draft

    Matching Image Sets via Adaptive Multi Convex Hull

    Get PDF
    Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Low-Temperature Spin Dynamics of Doped Manganites: roles of Mn-t2g and eg and O-2p states

    Full text link
    The low-temperature spin dynamics of doped manganites have been analyzed within a tight-binding model, the parameters of which are estimated by mapping the results of ab initio density functional calculations onto the model. This approach is found to provide a good description of the spin dynamics of the doped manganites, observed earlier within the ab initio calculations. Our analysis not only provides some insight into the roles of the eg and the t2g states but also indicates that the oxygen p states play an important role in the spin dynamics. This may cast doubt on the adaptability of the conventional model Hamiltonian approaches to the analysis of spin dynamics of doped manganites.Comment: 12 pages; Includes 5 figure

    Conceptual modelling: Towards detecting modelling errors in engineering applications

    Get PDF
    Rapid advancements of modern technologies put high demands on mathematical modelling of engineering systems. Typically, systems are no longer “simple” objects, but rather coupled systems involving multiphysics phenomena, the modelling of which involves coupling of models that describe different phenomena. After constructing a mathematical model, it is essential to analyse the correctness of the coupled models and to detect modelling errors compromising the final modelling result. Broadly, there are two classes of modelling errors: (a) errors related to abstract modelling, eg, conceptual errors concerning the coherence of a model as a whole and (b) errors related to concrete modelling or instance modelling, eg, questions of approximation quality and implementation. Instance modelling errors, on the one hand, are relatively well understood. Abstract modelling errors, on the other, are not appropriately addressed by modern modelling methodologies. The aim of this paper is to initiate a discussion on abstract approaches and their usability for mathematical modelling of engineering systems with the goal of making it possible to catch conceptual modelling errors early and automatically by computer assistant tools. To that end, we argue that it is necessary to identify and employ suitable mathematical abstractions to capture an accurate conceptual description of the process of modelling engineering systems
    • …
    corecore