1,351 research outputs found

    Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

    Full text link
    We show that for any positive integer dd, there are families of switched linear systems---in fixed dimension and defined by two matrices only---that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree ≤d\leq d, or (ii) a polytopic Lyapunov function with ≤d\leq d facets, or (iii) a piecewise quadratic Lyapunov function with ≤d\leq d pieces. This implies that there cannot be an upper bound on the size of the linear and semidefinite programs that search for such stability certificates. Several constructive and non-constructive arguments are presented which connect our problem to known (and rather classical) results in the literature regarding the finiteness conjecture, undecidability, and non-algebraicity of the joint spectral radius. In particular, we show that existence of an extremal piecewise algebraic Lyapunov function implies the finiteness property of the optimal product, generalizing a result of Lagarias and Wang. As a corollary, we prove that the finiteness property holds for sets of matrices with an extremal Lyapunov function belonging to some of the most popular function classes in controls

    Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time

    Get PDF
    We describe a computational model for studying the complexity of self-assembled structures with active molecular components. Our model captures notions of growth and movement ubiquitous in biological systems. The model is inspired by biology's fantastic ability to assemble biomolecules that form systems with complicated structure and dynamics, from molecular motors that walk on rigid tracks and proteins that dynamically alter the structure of the cell during mitosis, to embryonic development where large-scale complicated organisms efficiently grow from a single cell. Using this active self-assembly model, we show how to efficiently self-assemble shapes and patterns from simple monomers. For example, we show how to grow a line of monomers in time and number of monomer states that is merely logarithmic in the length of the line. Our main results show how to grow arbitrary connected two-dimensional geometric shapes and patterns in expected time that is polylogarithmic in the size of the shape, plus roughly the time required to run a Turing machine deciding whether or not a given pixel is in the shape. We do this while keeping the number of monomer types logarithmic in shape size, plus those monomers required by the Kolmogorov complexity of the shape or pattern. This work thus highlights the efficiency advantages of active self-assembly over passive self-assembly and motivates experimental effort to construct general-purpose active molecular self-assembly systems

    Robust-to-Dynamics Optimization

    Full text link
    A robust-to-dynamics optimization (RDO) problem is an optimization problem specified by two pieces of input: (i) a mathematical program (an objective function f:Rn→Rf:\mathbb{R}^n\rightarrow\mathbb{R} and a feasible set Ω⊆Rn\Omega\subseteq\mathbb{R}^n), and (ii) a dynamical system (a map g:Rn→Rng:\mathbb{R}^n\rightarrow\mathbb{R}^n). Its goal is to minimize ff over the set S⊆Ω\mathcal{S}\subseteq\Omega of initial conditions that forever remain in Ω\Omega under gg. The focus of this paper is on the case where the mathematical program is a linear program and the dynamical system is either a known linear map, or an uncertain linear map that can change over time. In both cases, we study a converging sequence of polyhedral outer approximations and (lifted) spectrahedral inner approximations to S\mathcal{S}. Our inner approximations are optimized with respect to the objective function ff and their semidefinite characterization---which has a semidefinite constraint of fixed size---is obtained by applying polar duality to convex sets that are invariant under (multiple) linear maps. We characterize three barriers that can stop convergence of the outer approximations from being finite. We prove that once these barriers are removed, our inner and outer approximating procedures find an optimal solution and a certificate of optimality for the RDO problem in a finite number of steps. Moreover, in the case where the dynamics are linear, we show that this phenomenon occurs in a number of steps that can be computed in time polynomial in the bit size of the input data. Our analysis also leads to a polynomial-time algorithm for RDO instances where the spectral radius of the linear map is bounded above by any constant less than one. Finally, in our concluding section, we propose a broader research agenda for studying optimization problems with dynamical systems constraints, of which RDO is a special case

    Error analysis of coarse-grained kinetic Monte Carlo method

    Get PDF
    In this paper we investigate the approximation properties of the coarse-graining procedure applied to kinetic Monte Carlo simulations of lattice stochastic dynamics. We provide both analytical and numerical evidence that the hierarchy of the coarse models is built in a systematic way that allows for error control in both transient and long-time simulations. We demonstrate that the numerical accuracy of the CGMC algorithm as an approximation of stochastic lattice spin flip dynamics is of order two in terms of the coarse-graining ratio and that the natural small parameter is the coarse-graining ratio over the range of particle/particle interactions. The error estimate is shown to hold in the weak convergence sense. We employ the derived analytical results to guide CGMC algorithms and we demonstrate a CPU speed-up in demanding computational regimes that involve nucleation, phase transitions and metastability.Comment: 30 page
    • …
    corecore