19,017 research outputs found

    Atomic-scale representation and statistical learning of tensorial properties

    Full text link
    This chapter discusses the importance of incorporating three-dimensional symmetries in the context of statistical learning models geared towards the interpolation of the tensorial properties of atomic-scale structures. We focus on Gaussian process regression, and in particular on the construction of structural representations, and the associated kernel functions, that are endowed with the geometric covariance properties compatible with those of the learning targets. We summarize the general formulation of such a symmetry-adapted Gaussian process regression model, and how it can be implemented based on a scheme that generalizes the popular smooth overlap of atomic positions representation. We give examples of the performance of this framework when learning the polarizability and the ground-state electron density of a molecule

    Tools for Quantum Algorithms

    Get PDF
    We present efficient implementations of a number of operations for quantum computers. These include controlled phase adjustments of the amplitudes in a superposition, permutations, approximations of transformations and generalizations of the phase adjustments to block matrix transformations. These operations generalize those used in proposed quantum search algorithms.Comment: LATEX, 15 pages, Minor changes: one author's e-mail and one reference numbe
    corecore