332 research outputs found

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs

    Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders

    Full text link
    We present a new algorithm for Independent Component Analysis (ICA) which has provable performance guarantees. In particular, suppose we are given samples of the form y=Ax+ηy = Ax + \eta where AA is an unknown n×nn \times n matrix and xx is a random variable whose components are independent and have a fourth moment strictly less than that of a standard Gaussian random variable and η\eta is an nn-dimensional Gaussian random variable with unknown covariance Σ\Sigma: We give an algorithm that provable recovers AA and Σ\Sigma up to an additive ϵ\epsilon and whose running time and sample complexity are polynomial in nn and 1/ϵ1 / \epsilon. To accomplish this, we introduce a novel "quasi-whitening" step that may be useful in other contexts in which the covariance of Gaussian noise is not known in advance. We also give a general framework for finding all local optima of a function (given an oracle for approximately finding just one) and this is a crucial step in our algorithm, one that has been overlooked in previous attempts, and allows us to control the accumulation of error when we find the columns of AA one by one via local search

    Complexity of Discrete Energy Minimization Problems

    Full text link
    Discrete energy minimization is widely-used in computer vision and machine learning for problems such as MAP inference in graphical models. The problem, in general, is notoriously intractable, and finding the global optimal solution is known to be NP-hard. However, is it possible to approximate this problem with a reasonable ratio bound on the solution quality in polynomial time? We show in this paper that the answer is no. Specifically, we show that general energy minimization, even in the 2-label pairwise case, and planar energy minimization with three or more labels are exp-APX-complete. This finding rules out the existence of any approximation algorithm with a sub-exponential approximation ratio in the input size for these two problems, including constant factor approximations. Moreover, we collect and review the computational complexity of several subclass problems and arrange them on a complexity scale consisting of three major complexity classes -- PO, APX, and exp-APX, corresponding to problems that are solvable, approximable, and inapproximable in polynomial time. Problems in the first two complexity classes can serve as alternative tractable formulations to the inapproximable ones. This paper can help vision researchers to select an appropriate model for an application or guide them in designing new algorithms.Comment: ECCV'16 accepte

    Approximation for Maximum Surjective Constraint Satisfaction Problems

    Full text link
    Maximum surjective constraint satisfaction problems (Max-Sur-CSPs) are computational problems where we are given a set of variables denoting values from a finite domain B and a set of constraints on the variables. A solution to such a problem is a surjective mapping from the set of variables to B such that the number of satisfied constraints is maximized. We study the approximation performance that can be acccchieved by algorithms for these problems, mainly by investigating their relation with Max-CSPs (which are the corresponding problems without the surjectivity requirement). Our work gives a complexity dichotomy for Max-Sur-CSP(B) between PTAS and APX-complete, under the assumption that there is a complexity dichotomy for Max-CSP(B) between PO and APX-complete, which has already been proved on the Boolean domain and 3-element domains
    • …
    corecore