26 research outputs found

    Subclass Discriminant Analysis of Morphological and Textural Features for HEp-2 Staining Pattern Classification

    Get PDF
    Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune diseases. The current technique, based on human visual inspection, is time-consuming, subjective and dependent on the operator's experience. Automating this process may be a solution to these limitations, making IIF faster and more reliable. This work proposes a classification approach based on Subclass Discriminant Analysis (SDA), a dimensionality reduction technique that provides an effective representation of the cells in the feature space, suitably coping with the high within-class variance typical of HEp-2 cell patterns. In order to generate an adequate characterization of the fluorescence patterns, we investigate the individual and combined contributions of several image attributes, showing that the integration of morphological, global and local textural features is the most suited for this purpose. The proposed approach provides an accuracy of the staining pattern classification of about 90%

    Weak Visibility Queries of Line Segments in Simple Polygons

    Full text link
    Given a simple polygon P in the plane, we present new algorithms and data structures for computing the weak visibility polygon from any query line segment in P. We build a data structure in O(n) time and O(n) space that can compute the visibility polygon for any query line segment s in O(k log n) time, where k is the size of the visibility polygon of s and n is the number of vertices of P. Alternatively, we build a data structure in O(n^3) time and O(n^3) space that can compute the visibility polygon for any query line segment in O(k + log n) time.Comment: 16 pages, 9 figures. A preliminary version of this paper appeared in ISAAC 2012 and we have improved results in this full versio
    corecore