227 research outputs found

    Partial sequence labeling with structured Gaussian Processes

    Full text link
    Existing partial sequence labeling models mainly focus on max-margin framework which fails to provide an uncertainty estimation of the prediction. Further, the unique ground truth disambiguation strategy employed by these models may include wrong label information for parameter learning. In this paper, we propose structured Gaussian Processes for partial sequence labeling (SGPPSL), which encodes uncertainty in the prediction and does not need extra effort for model selection and hyperparameter learning. The model employs factor-as-piece approximation that divides the linear-chain graph structure into the set of pieces, which preserves the basic Markov Random Field structure and effectively avoids handling large number of candidate output sequences generated by partially annotated data. Then confidence measure is introduced in the model to address different contributions of candidate labels, which enables the ground-truth label information to be utilized in parameter learning. Based on the derived lower bound of the variational lower bound of the proposed model, variational parameters and confidence measures are estimated in the framework of alternating optimization. Moreover, weighted Viterbi algorithm is proposed to incorporate confidence measure to sequence prediction, which considers label ambiguity arose from multiple annotations in the training data and thus helps improve the performance. SGPPSL is evaluated on several sequence labeling tasks and the experimental results show the effectiveness of the proposed model

    Efficient Long-Text Understanding with Short-Text Models

    Get PDF
    Transformer-based pretrained language models (LMs) are ubiquitous across natural language understanding, but cannot be applied to long sequences such as stories, scientific articles and long documents, due to their quadratic complexity. While a myriad of efficient transformer variants have been proposed, they are typically based on custom implementations that require expensive pretraining from scratch. In this work, we propose SLED: SLiding-Encoder and Decoder, a simple approach for processing long sequences that re-uses and leverages battle-tested short-text pretrained LMs. Specifically, we partition the input into overlapping chunks, encode each with a short-text LM encoder and use the pretrained decoder to fuse information across chunks (fusion-in-decoder). We illustrate through controlled experiments that SLED offers a viable strategy for long text understanding and evaluate our approach on SCROLLS, a benchmark with seven datasets across a wide range of language understanding tasks. We find that SLED is competitive with specialized models that are up to 50x larger and require a dedicated and expensive pretraining step.Comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2023. Authors' final version (pre-MIT

    LSG Attention: Extrapolation of pretrained Transformers to long sequences

    Full text link
    Transformer models achieve state-of-the-art performance on a wide range of NLP tasks. They however suffer from a prohibitive limitation due to the self-attention mechanism, inducing O(n2)O(n^2) complexity with regard to sequence length. To answer this limitation we introduce the LSG architecture which relies on Local, Sparse and Global attention. We show that LSG attention is fast, efficient and competitive in classification and summarization tasks on long documents. Interestingly, it can also be used to adapt existing pretrained models to efficiently extrapolate to longer sequences with no additional training. Along with the introduction of the LSG attention mechanism, we propose tools to train new models and adapt existing ones based on this mechanism
    corecore