241 research outputs found

    Decentralized Variational Filtering for Target Tracking in Binary Sensor Networks

    Full text link

    The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    Get PDF
    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    Energy Aware Algorithms for managing Wireless Sensor Networks

    Get PDF
    While the majority of the current Wireless Sensor Networks (WSNs) research has prioritized either the coverage of the monitored area or the energy efficiency of the network, it is clear that their relationship must be further studied in order to find optimal solutions that balance the two factors. Higher degrees of redundancy can be attained by increasing the number of active sensors monitoring a given area which results in better performance. However, this in turn increases the energy being consumed. In our research, we focus on attaining a solution that considers several optimization parameters such as the percentage of coverage, quality of coverage and energy consumption. The problem is modeled using a bipartite graph and employs an evolutionary algorithm to handle the activation and deactivation of the sensors. An accelerated version of the algorithm is also presented; this algorithm attempts to cleverly mutate the string being considered after analyzing the desired output conditions and performs a calculated crossover depending on the fitness of the parent strings. This results in a quicker convergence and a considerable reduction in the search time for attaining the desired solutions. Proficient cluster formation in wireless sensor networks reduces the total energy consumed by the network and prolongs the life of the network. There are various clustering approaches proposed, depending on the application and the objective to be attained. There are situations in which sensors are randomly dispersed over the area to be monitored. In our research, we also propose a solution for such scenarios using heterogeneous networks where a network has to self-organize itself depending on the physical allocations of sensors, cluster heads etc. The problem is modeled using a multi-stage graph and employs combinatorial algorithms to determine which cluster head a particular sensor would report to and which sink node a cluster head would report to. The solution proposed provides flexibility so that it can be applied to any network irrespective of density of resources deployed in the network. Finally we try to analyze how the modification of the sequence of execution of the two methods modifies the results. We also attempt to diagnose the reasons responsible for it and conclude by highlighting the advantages of each of the sequence

    An experimental characterization of reservoir computing in ambient assisted living applications

    Get PDF
    In this paper, we present an introduction and critical experimental evaluation of a reservoir computing (RC) approach for ambient assisted living (AAL) applications. Such an empirical analysis jointly addresses the issues of efficiency, by analyzing different system configurations toward the embedding into computationally constrained wireless sensor devices, and of efficacy, by analyzing the predictive performance on real-world applications. First, the approach is assessed on a validation scheme where training, validation and test data are sampled in homogeneous ambient conditions, i.e., from the same set of rooms. Then, it is introduced an external test set involving a new setting, i.e., a novel ambient, which was not available in the first phase of model training and validation. The specific test-bed considered in the paper allows us to investigate the capability of the RC approach to discriminate among user movement trajectories from received signal strength indicator sensor signals. This capability can be exploited in various AAL applications targeted at learning user indoor habits, such as in the proposed indoor movement forecasting task. Such a joint analysis of the efficiency/efficacy trade-off provides novel insight in the concrete successful exploitation of RC for AAL tasks and for their distributed implementation into wireless sensor networks

    Distributed information extraction from large-scale wireless sensor networks

    Get PDF

    Enhanced Network Connectivity And Node Lifetime Techniques In Wireless Sensor Networks

    Get PDF
    Low-cost sensors that may be integrated to form Wireless Sensor Networks (WSNs) have received increased research attention for their potential application in environmental monitoring, healthcare, and defence, among others. Connectivity is essential in WSNs. It represents the ability of a member node to communicate with other nodes within a network either through direct transmission or multi-hop relays. Low connectivity is a result of the network being broken up into different and disconnected groups of nodes. Whether they are dispersed from the air or are installed manually, nodes may still have a sparsely dense distribution. The limited radio range of the nodes can also cause the network to partition into disjoint groups, a process that interrupts or completely prevents communication. This dissertation proposes an Intelligent Multi-Hop Cluster Transmission of Information (IMHCTI) protocol which integrates a Mathematical Stochastic Cross-Layer (MSCL) model with the proposed MHCTI protocol to improve network connectivity and enhance network lifetime. The MHCTI protocol is based on network clustering coherent-cooperative transmission fields from closely spaced wireless nodes, to improve the data transmission distance range and to address the problem of poor network connectivity
    corecore