28,176 research outputs found

    RANDOM WALKS AND FRACTAL STRUCTURES IN AGRICULTURAL COMMODITY FUTURES PRICES

    Get PDF
    This paper investigates whether the assumption of Brownian motion often used to describe commodity price movements is satisfied. Using historical data from 17 commodity futures contracts specific tests of fractional and ordinary Brownian motion are conducted. The analyses are conducted under the null hypothesis of ordinary Brownian motion against the alternative of persistent or ergodic fractional Brownian motion. Tests for fractional Brownian motion are based on a variance ratio test and compared with conventional R-S analyses. However, standard errors based on Monte Carlo simulations are quite high, meaning that the acceptance region for the null hypothesis is large. The results indicate that for the most part, the null hypothesis of ordinary Brownian motion cannot be rejected for 14 of 17 series. The three series that did not satisfy the tests were rejected because they violated the stationarity property of the random walk hypothesis.Demand and Price Analysis, Marketing,

    Efficient Management of Short-Lived Data

    Full text link
    Motivated by the increasing prominence of loosely-coupled systems, such as mobile and sensor networks, which are characterised by intermittent connectivity and volatile data, we study the tagging of data with so-called expiration times. More specifically, when data are inserted into a database, they may be tagged with time values indicating when they expire, i.e., when they are regarded as stale or invalid and thus are no longer considered part of the database. In a number of applications, expiration times are known and can be assigned at insertion time. We present data structures and algorithms for online management of data tagged with expiration times. The algorithms are based on fully functional, persistent treaps, which are a combination of binary search trees with respect to a primary attribute and heaps with respect to a secondary attribute. The primary attribute implements primary keys, and the secondary attribute stores expiration times in a minimum heap, thus keeping a priority queue of tuples to expire. A detailed and comprehensive experimental study demonstrates the well-behavedness and scalability of the approach as well as its efficiency with respect to a number of competitors.Comment: switched to TimeCenter latex styl

    AMaχoS—Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaχoS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaχoS and discusses how its current architecture realizes these principles

    How sensitive are equilibrium pricing models to real-world distortions?

    Full text link
    In both finance and economics, quantitative models are usually studied as isolated mathematical objects --- most often defined by very strong simplifying assumptions concerning rationality, efficiency and the existence of disequilibrium adjustment mechanisms. This raises the important question of how sensitive such models might be to real-world effects that violate the assumptions. We show how the consequences of rational behavior caused by perverse incentives, as well as various irrational tendencies identified by behavioral economists, can be systematically and consistently introduced into an agent-based model for a financial asset. This generates a class of models which, in the special case where such effects are absent, reduces to geometric Brownian motion --- the usual equilibrium pricing model. Thus we are able to numerically perturb a widely-used equilibrium pricing model market and investigate its stability. The magnitude of such perturbations in real markets can be estimated and the simulations imply that this is far outside the stability region of the equilibrium solution, which is no longer observed. Indeed the price fluctuations generated by endogenous dynamics, are in good general agreement with the excess kurtosis and heteroskedasticity of actual asset prices. The methodology is presented within the context of a financial market. However, there are close links to concepts and theories from both micro- and macro-economics including rational expectations, Soros' theory of reflexivity, and Minsky's theory of financial instability

    Portfolio Optimization and Long-Term Dependence

    Get PDF
    Whilst emphasis has been given to short-term dependence of financial returns, long-term dependence remains overlooked. Despite financial literature provides evidence of long-term’s memory existence, serial-independence assumption prevails. This document’s long-term dependence assessment relies on rescaled range analysis (R/S), a popular and robust methodology designed for Geophysics but extensively used in financial literature. Results correspond to most of the previous evidence of significant long-term dependence, particularly for small and illiquid markets, where persistence is its most common kind. Persistence conveys that the range of possible future values of the variable will be wider than the range of purely random and independent variables. Ahead of R/S financial literature, authors estimate an adjusted Hurst exponent in order to properly estimate the covariance matrix at higher investment horizons, avoiding the traditional -independence reliant- square-root-of-time rule. Ignoring long-term dependence within the mean-variance portfolio optimization results in concealed risk taking; conversely, by adjusting for long-term dependence the weight of high (low) persistence risk factors decreases (increases) as the investment horizon widens. This alleviates some well-known shortcomings of conventional portfolio optimization for long-term investors (e.g. central banks, pension funds and sovereign wealth managers), such as excessive risk taking in long-term portfolios, extreme weights, home bias, and reluctance to hold foreign currency-denominated assets.Portfolio optimization, Hurst exponent, long-term dependence, biased random walk, rescaled range analysis. Classification JEL: G11, G32, G20, C14.

    A self-adjusted Monte Carlo simulation as model of financial markets with central regulation

    Full text link
    Properties of the self-adjusted Monte Carlo algorithm applied to 2d Ising ferromagnet are studied numerically. The endogenous feedback form expressed in terms of the instant running averages is suggested in order to generate a biased random walk of the temperature that converges to criticality without an external tuning. The robustness of a stationary regime with respect to partial accessibility of the information is demonstrated. Several statistical and scaling aspects have been identified which allow to establish an alternative spin lattice model of the financial market. It turns out that our model alike model suggested by S. Bornholdt, Int. J. Mod. Phys. C {\bf 12} (2001) 667, may be described by L\'evy-type stationary distribution of feedback variations with unique exponent α1∌3.3\alpha_1 \sim 3.3. However, the differences reflected by Hurst exponents suggest that resemblances between the studied models seem to be nontrivial.Comment: 19 pages, 9 figures, 30 reference
    • 

    corecore