453 research outputs found

    Neural signature kernels as infinite-width-depth-limits of controlled ResNets

    Full text link
    Motivated by the paradigm of reservoir computing, we consider randomly initialized controlled ResNets defined as Euler-discretizations of neural controlled differential equations (Neural CDEs). We show that in the infinite-width-then-depth limit and under proper scaling, these architectures converge weakly to Gaussian processes indexed on some spaces of continuous paths and with kernels satisfying certain partial differential equations (PDEs) varying according to the choice of activation function. In the special case where the activation is the identity, we show that the equation reduces to a linear PDE and the limiting kernel agrees with the signature kernel of Salvi et al. (2021). In this setting, we also show that the width-depth limits commute. We name this new family of limiting kernels neural signature kernels. Finally, we show that in the infinite-depth regime, finite-width controlled ResNets converge in distribution to Neural CDEs with random vector fields which, depending on whether the weights are shared across layers, are either time-independent and Gaussian or behave like a matrix-valued Brownian motion

    Electron Thermal Runaway in Atmospheric Electrified Gases: a microscopic approach

    Get PDF
    Thesis elaborated from 2018 to 2023 at the Instituto de AstrofĂ­sica de AndalucĂ­a under the supervision of Alejandro Luque (Granada, Spain) and Nikolai Lehtinen (Bergen, Norway). This thesis presents a new database of atmospheric electron-molecule collision cross sections which was published separately under the DOI : With this new database and a new super-electron management algorithm which significantly enhances high-energy electron statistics at previously unresolved ratios, the thesis explores general facets of the electron thermal runaway process relevant to atmospheric discharges under various conditions of the temperature and gas composition as can be encountered in the wake and formation of discharge channels

    Optimal control of bioproduction in the presence of population heterogeneity

    Get PDF
    International audienceCell-to-cell variability, born of stochastic chemical kinetics, persists even in large isogenic populations. In the study of single-cell dynamics this is typically accounted for. However, on the population level this source of heterogeneity is often sidelined to avoid the inevitable complexity it introduces. The homogeneous models used instead are more tractable but risk disagreeing with their heterogeneous counterparts and may thus lead to severely suboptimal control of bioproduction. In this work, we introduce a comprehensive mathematical framework for solving bioproduction optimal control problems in the presence of heterogeneity. We study population-level models in which such heterogeneity is retained, and propose order-reduction approximation techniques. The reduced-order models take forms typical of homogeneous bioproduction models, making them a useful benchmark by which to study the importance of heterogeneity. Moreover, the derivation from the heterogeneous setting sheds light on parameter selection in ways a direct homogeneous outlook cannot, and reveals the source of approximation error. With view to optimally controlling bioproduction in microbial communities, we ask the question: when does optimising the reduced-order models produce strategies that work well in the presence of population heterogeneity? We show that, in some cases, homogeneous approximations provide remarkably accurate surrogate models. Nevertheless, we also demonstrate that this is not uniformly true: overlooking the heterogeneity can lead to significantly suboptimal control strategies. In these cases, the heterogeneous tools and perspective are crucial to optimise bioproduction

    Action for classical, quantum, closed and open systems

    Full text link
    The action functional can be used to define classical, quantum, closed, and open dynamics in a generalization of the variational principle and in the path integral formalism in classical and quantum dynamics, respectively. These schemes are based on an unusual feature, a formal redoubling of the degrees of freedom. Five arguments to motivate such a redoubling are put forward to demonstrate that such a formalism is natural. The common elements of the different arguments is the causal time arrow. Some lessons concerning decoherence, dissipation and the classical limits are mentioned, too.Comment: 39 pages 4 figure

    Demographic effects of aggregation in the presence of a component Allee effect

    Full text link
    Intraspecific interactions are key drivers of population dynamics because they establish relations between individual fitness and population density. The component Allee effect is defined as a positive correlation between any fitness component of a focal organism and population density, and it can lead to positive density dependence in the population per capita growth rate. The spatial structure is key to determining whether and to which extent a component Allee effect will manifest at the demographic level because it determines how individuals interact with one another. However, existing spatial models to study the Allee effect impose a fixed spatial structure, which limits our understanding of how a component Allee effect and the spatial dynamics jointly determine the existence of demographic Allee effects. To fill this gap, we introduce a spatially-explicit theoretical framework where spatial structure and population dynamics are emergent properties of the individual-level demographic rates. Depending on the intensity of the individual processes the population exhibits a variety of spatial patterns that determine the demographic-level by-products of an existing individual-level component Allee effect. We find that aggregation increases population abundance and allows populations to survive in harsher environments and at lower global population densities when compared with uniformly distributed organisms. Moreover, aggregation can prevent the component Allee effect from manifesting at the population level or restrict it to the level of each independent group. These results provide a mechanistic understanding of how component Allee effects operate for different spatial population structures and show at the population level. Our results contribute to better understanding population dynamics in the presence of Allee effects and can potentially inform population management strategies

    Comparing real and synthetic observations of protostellar disks

    Get PDF
    Nascent envelope disk structures around protostars play a crucial role in the process of star and planet formation. As ALMA reveals unprecedented details of the envelope, disk, and outflow structures in nearby protostellar systems, a consistent interpretation for these observations remains absent, instead, highly simplified models are often adopted to partially fit the observed features. In this project, we aim to generate more realistic synthetic observations of the nascent protostellar disk and envelope system, using existing radiation and non-ideal magnetohydrodynamic simulations of protostellar collapse and disk formation. The main goal of the project is to provide multi-facet interpretation of the current continuum and polarization observations of protostellar sources at their earliest stages, and offer more realistic constraints on the dust growth in the early protoplanetary disks

    Mixed Chebyshev and Legendre polynomials differentiation matrices for solving initial-boundary value problems

    Get PDF
    A new form of basis functions structures has been constructed. These basis functions constitute a mix of Chebyshev polynomials and Legendre polynomials. The main purpose of these structures is to present several forms of differentiation matrices. These matrices were built from the perspective of pseudospectral approximation. Also, an investigation of the error analysis for the proposed expansion has been done. Then, we showed the presented matrices' efficiency and accuracy with several test functions. Consequently, the correctness of our matrices is demonstrated by solving ordinary differential equations and some initial boundary value problems. Finally, some comparisons between the presented approximations, exact solutions, and other methods ensured the efficiency and accuracy of the proposed matrices

    Selected Topics in Gravity, Field Theory and Quantum Mechanics

    Get PDF
    Quantum field theory has achieved some extraordinary successes over the past sixty years; however, it retains a set of challenging problems. It is not yet able to describe gravity in a mathematically consistent manner. CP violation remains unexplained. Grand unified theories have been eliminated by experiment, and a viable unification model has yet to replace them. Even the highly successful quantum chromodynamics, despite significant computational achievements, struggles to provide theoretical insight into the low-energy regime of quark physics, where the nature and structure of hadrons are determined. The only proposal for resolving the fine-tuning problem, low-energy supersymmetry, has been eliminated by results from the LHC. Since mathematics is the true and proper language for quantitative physical models, we expect new mathematical constructions to provide insight into physical phenomena and fresh approaches for building physical theories
    • …
    corecore