5,848 research outputs found

    Efficient signal detection for space-time block coding over time-selective fading channels

    Get PDF
    In this paper, we consider the signal detection for space-time block coding over time-selective fading channels. We derive a general maximum likelihood (ML) decision rule for space-time block coding (STBC). The resulting detector is valid for any number of receive antennas and for all STBC systems that have the linear dispersion property. The detector results in a quadratic minimization problem, which can be solved efficiently by sphere decoding or nulling-and-cancelling detection. For orthogonal STBC systems, we also propose a suboptimal detector using the principle of parallel interference cancellation (PIC) that is valid for systems with an arbitrary number of receive antennas

    Journal of Telecommunications and Information Technology, Improved Signal Detection Techniques for QOSTBC System in Fast Fading Channel, 2020, nr 1

    Get PDF
    Most existing quasi-orthogonal space time Block coding (QO-STBC) schemes have been developed relying on the assumption that the channel is at or remains static during the length of the code word symbol periods to achieve an optimal antenna diversity gain. However, in time-selective fading channels, this assumption does not hold and causes intertransmit-antenna-interferences (ITAI). Therefore, the simple pairwise maximum likelihood decoding scheme is not sufficient to recover original transmitted signals at the receiver side. To avoid the interferences, we have analyzed several signal detection schemes, namely zero forcing (ZF), two-step zero forcing (TS-ZF), minimum mean square error (MMSE), zero forcing - interference cancelation - decision feedback equalizer (ZF-IC-DFE) and minimum mean square error - interference cancelation { decision feedback equalizer (MMSE-IC-DFE). We have proposed two efficient iterative signal detection schemes, namely zero forcing - iterative interference cancelation - zero forcing { decision feedback equalization (ZF-IIC-ZF-DFE) and minimum mean square error - parallel interference cancelation - zero forcing – decision feedback equalization (MMSE-IIC-ZF-DFE). The simulation results show that these two proposed detection schemes significantly outperform all conventional methods for QOSTBC system over time selective channel

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Successive interference cancellation schemes for time-reversal space-time block codes

    Get PDF
    In this paper, we propose two simple signal detectors that are based on successive interference cancellation (SIC) for time-reversal space-time block codes to combat intersymbol interference in frequency-selective fading environments. The main idea is to treat undetected symbols and noise together as Gaussian noise with matching mean and variance and use the already-detected symbols to help current signal recovery. The first scheme is a simple SIC signal detector whose ordering is based on the channel powers. The second proposed SIC scheme, which is denoted parallel arbitrated SIC (PA-SIC), is a structure that concatenates in parallel a certain number of SIC detectors with different ordering sequences and then combines the soft output of each individual SIC to achieve performance gains. For the proposed PA-SIC, we describe the optimal ordering algorithm as a combinatorial problem and present a low-complexity ordering technique for signal decoding. Simulations show that the new schemes can provide a performance that is very close to maximum-likelihood sequence estimation (MLSE) decoding under time-invariant conditions. Results for frequency-selective and doubly selective fading channels show that the proposed schemes significantly outperform the conventional minimum mean square error-(MMSE) like receiver and that the new PA-SIC performs much better than the proposed conventional SIC and is not far in performance from the MLSE. The computational complexity of the SIC algorithms is only linear with the number of transmit antennas and transmission rates, which is very close to the MMSE and much lower than the MLSE. The PA-SIC also has a complexity that is linear with the number of SIC components that are in parallel, and the optimum tradeoff between performance and complexity can be easily determined according to the number of SIC detectors

    Efficient space-frequency block coded pilot-aided channel estimation method for multiple-input-multiple-output orthogonal frequency division multiplexing systems over mobile frequency-selective fading channels

    Get PDF
    Β© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An iterative pilot-aided channel estimation technique for space-frequency block coded (SFBC) multiple-input multiple-output orthogonal frequency division multiplexing systems is proposed. Traditionally, when channel estimation techniques are utilised, the SFBC information signals are decoded one block at a time. In the proposed algorithm, multiple blocks of SFBC information signals are decoded simultaneously. The proposed channel estimation method can thus significantly reduce the amount of time required to decode information signals compared to similar channel estimation methods proposed in the literature. The proposed method is based on the maximum likelihood approach that offers linearity and simplicity of implementation. An expression for the pairwise error probability (PEP) is derived based on the estimated channel. The derived PEP is then used to determine the optimal power allocation for the pilot sequence. The performance of the proposed algorithm is demonstrated in high frequency selective channels, for different number of pilot symbols, using different modulation schemes. The algorithm is also tested under different levels of Doppler shift and for different number of transmit and receive antennas. The results show that the proposed scheme minimises the error margin between slow and high speed receivers compared to similar channel estimation methods in the literature.Peer reviewe

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    Β© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe

    Single-RF spatial modulation requires single-carrier transmission: frequency-domain turbo equalization for dispersive channels

    No full text
    In this paper, we propose a broadband single-carrier (SC) spatial-modulation (SM) based multiple-input multipleoutput (MIMO) architecture relying on a soft-decision (SoD) frequency-domain equalization (FDE) receiver. We demonstrate that conventional orthogonal frequency-division multiplexing (OFDM)-based broadband transmissions are not readily suitable for the single–radio frequency (RF) assisted SM-MIMO schemes, since this scheme does not exhibit any substantial performance advantage over single-antenna transmissions. To circumvent this limitation, a low-complexity soft-decision (SoD) FDE algorithm based on the minimum mean-square error (MMSE) criterion is invoked for our broadband SC-based SM-MIMO scheme, which is capable of operating in a strongly dispersive channel having a long channel impulse response (CIR) at a moderate decoding complexity. Furthermore, our SoD FDE attains a near-capacity performance with the aid of a three-stage concatenated SC-based SM architecture
    • …
    corecore