3 research outputs found

    Efficient semantic image segmentation with superpixel pooling

    Full text link
    In this work, we evaluate the use of superpixel pooling layers in deep network architectures for semantic segmentation. Superpixel pooling is a flexible and efficient replacement for other pooling strategies that incorporates spatial prior information. We propose a simple and efficient GPU-implementation of the layer and explore several designs for the integration of the layer into existing network architectures. We provide experimental results on the IBSR and Cityscapes dataset, demonstrating that superpixel pooling can be leveraged to consistently increase network accuracy with minimal computational overhead. Source code is available at https://github.com/bermanmaxim/superpixPoo

    Generating superpixels using deep image representations

    Full text link
    Superpixel algorithms are a common pre-processing step for computer vision algorithms such as segmentation, object tracking and localization. Many superpixel methods only rely on colors features for segmentation, limiting performance in low-contrast regions and applicability to infrared or medical images where object boundaries have wide appearance variability. We study the inclusion of deep image features in the SLIC superpixel algorithm to exploit higher-level image representations. In addition, we devise a trainable superpixel algorithm, yielding an intermediate domain-specific image representation that can be applied to different tasks. A clustering-based superpixel algorithm is transformed into a pixel-wise classification task and superpixel training data is derived from semantic segmentation datasets. Our results demonstrate that this approach is able to improve superpixel quality consistently

    Refining Semantic Segmentation with Superpixel by Transparent Initialization and Sparse Encoder

    Full text link
    Although deep learning greatly improves the performance of semantic segmentation, its success mainly lies in object central areas without accurate edges. As superpixels are a popular and effective auxiliary to preserve object edges, in this paper, we jointly learn semantic segmentation with trainable superpixels. We achieve it with fully-connected layers with Transparent Initialization (TI) and efficient logit consistency using a sparse encoder. The proposed TI preserves the effects of learned parameters of pretrained networks. This avoids a significant increase of the loss of pretrained networks, which otherwise may be caused by inappropriate parameter initialization of the additional layers. Meanwhile, consistent pixel labels in each superpixel are guaranteed by logit consistency. The sparse encoder with sparse matrix operations substantially reduces both the memory requirement and the computational complexity. We demonstrated the superiority of TI over other parameter initialization methods and tested its numerical stability. The effectiveness of our proposal was validated on PASCAL VOC 2012, ADE20K, and PASCAL Context showing enhanced semantic segmentation edges. With quantitative evaluations on segmentation edges using performance ratio and F-measure, our method outperforms the state-of-the-art
    corecore