17 research outputs found

    A survey on smart grid communication system

    Get PDF
    published_or_final_versio

    Towards a Security Enabled and SOA-based QoS (for the Smart Grid) Architecture

    Get PDF
    QoS and Security features are playing an important role in modern network architecures. Dynamic selection of services and by extension of service providers are vital in today’s liberalized market of energy. On the other hand it is equally important for Service Providers to spot the one QoS Module that offers the best QoS level in a given cost. Type of service, response time, availability and cost, consist a basic set of attributes that should be taken into consideration when building a concrete Grid network. In the proposed QoS architecture Prosumers request services based on the aforementioned set of attributes. The Prosumer requests the service through the QoS Module. It is then the QoS Module that seeks the Service Provider that best fits the needs of the client. The aforementioned approach is well supplemented with an in depth analysis on existing authentication and authorization protocols. The authors believe that QoS and security can work in parallel without adding extra burden in the Smart Grid infrastructure. This is feasible by building an in advance system for placing, scheduling, and assigning of the requests for energy consumption or production, thus decongesting the traffic in the whole network

    Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity

    Get PDF
    Cybersecurity is a fast-evolving discipline that is always in the news over the last decade, as the number of threats rises and cybercriminals constantly endeavor to stay a step ahead of law enforcement. Over the years, although the original motives for carrying out cyberattacks largely remain unchanged, cybercriminals have become increasingly sophisticated with their techniques. Traditional cybersecurity solutions are becoming inadequate at detecting and mitigating emerging cyberattacks. Advances in cryptographic and Artificial Intelligence (AI) techniques (in particular, machine learning and deep learning) show promise in enabling cybersecurity experts to counter the ever-evolving threat posed by adversaries. Here, we explore AI\u27s potential in improving cybersecurity solutions, by identifying both its strengths and weaknesses. We also discuss future research opportunities associated with the development of AI techniques in the cybersecurity field across a range of application domains

    Key Management Scheme for Smart Grid

    Get PDF
    A Smart Grid (SG) is a modern electricity supply system. It uses information and communication technology (ICT) to run, monitor and control data between the generation source and the end user. It comprises a set of technologies that uses sensing, embedded processing and digital communications to intelligently control and monitor an electricity grid with improved reliability, security, and efficiency. SGs are classified as Critical Infrastructures. In the recent past, there have been cyber-attacks on SGs causing substantial damage and loss of services. A recent cyber-attack on Ukraine's SG caused over 2.3 million homes to be without power for around six hours. Apart from the loss of services, some portions of the SG are yet to be operational, due to the damage caused. SGs also face security challenges such as confidentiality, availability, fault tolerance, privacy, and other security issues. Communication and networking technologies integrated into the SG require new and existing security vulnerabilities to be thoroughly investigated. Key management is one of the most important security requirements to achieve data confidentiality and integrity in a SG system. It is not practical to design a single key management scheme/framework for all systems, actors and segments in the smart grid, since the security requirements of various sub-systems in the SG vary. We address two specific sub-systems categorised by the network connectivity layer – the Home Area Network (HAN) and the Neighbourhood Area Network (NAN). Currently, several security schemes and key management solutions for SGs have been proposed. However, these solutions lack better security for preventing common cyber-attacks such as node capture attack, replay attack and Sybil attack. We propose a cryptographic key management scheme that takes into account the differences in the HAN and NAN segments of the SG with respect to topology, authentication and forwarding of data. The scheme complies with the overall performance requirements of the smart grid. The proposed scheme uses group key management and group authentication in order to address end-to-end security for the HAN and NAN scenarios in a smart grid, which fulfils data confidentiality, integrity and scalability requirements. The security scheme is implemented in a multi-hop sensor network using TelosB motes and ZigBee OPNET simulation model. In addition, replay attack, Sybil attack and node capture attack scenarios have been implemented and evaluated in a NAN scenario. Evaluation results show that the scheme is resilient against node capture attacks and replay attacks. Smart Meters in a NAN are able to authenticate themselves in a group rather than authenticating one at a time. This significant improvement over existing schemes is discussed with comparisons with other security schemes

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Evaluating of DNP3 protocol over serial eastern operating unit substations and improving SCADA performance

    Get PDF
    A thesis which models the DNP3 and IEC 61850 protocol in OPNETSupervisory Control and Data Acquisition (SCADA) is a critical part of monitoring and controlling of the electrical substation. The aim of this dissertation is to investigate the performance of the Distributed Network Protocol Version 3.3 (DNP3) protocol and to compare its performance to that of International Electro-technical Commission (IEC) 61850 protocol in an electrical substation communication network environment. Building an electrical substation control room and installing the network equipment was going to be expensive and take a lot of time. The better option was to build a model of the electrical substation communication network and run simulations. Riverbend modeller academic edition known as Optimized Network Engineering Tool (OPNET) was chosen as a software package to model substation communication network, DNP3 protocol and IEC 61850 Protocol stack. Modelling the IEC 61850 protocol stack on OPNET involved building the used Open System Interconnection (OSI) layers of the IEC 61850 protocol stack onto the application definitions of OPNET. The Transmission Control Protocol/Internet Protocol (TCP/IP) configuration settings of DNP3 protocol were also modelled on the OPNET application definitions. The aim is to compare the two protocols and determine which protocol is the best performing one in terms of throughput, data delay and latency. The substation communication model consists of 10 ethernet nodes which simulate protection Intelligent Electronic Devices (IEDs), 13 ethernet switches, a server which simulates the substation Remote Terminal Unit (RTU) and the DNP3 Protocol over TCP/IP simulated on the model. DNP3 is a protocol that can be used in a power utility computer network to provide communication service for the grid components. DNP3 protocol is currently used at Eskom as the communication protocol because it is widely used by equipment vendors in the energy sector. DNP3 protocol will be modelled before being compared to the new recent robust protocol IEC 61850 in the same model and determine which protocol is the best for Eskom on the network of the power grid. The network load and packet delay parameters were sampled when 10%, 50%, 90% and 100% of devices are online. The IEC 61850 protocol model has three scenarios and they are normal operation of a Substation, maintenance in a Substation and Buszone operation at a Substation. In these scenarios packet end to end delay of Generic Object Oriented Substation Event (GOOSE), vi © University of South Africa 2020 Generic Substation Status Event (GSSE), Sampled Values (SV) and Manufacturing Messaging Specification (MMS) messages are monitored. The throughput from the IED under maintenance and the throughput at the Substation RTU end is monitored in the model. Analysis of the results of the DNP3 protocol simulation showed that with an increase in number of nodes there was an increase in packet delay as well as the network load. The load on the network should be taken into consideration when designing a substation communication network that requires a quick response such as a smart gird. GOOSE, GSSE, SV results on the IEC 61850 model met all the requirements of the IEC 61850 standard and the MMS did not meet all the requirements of the IEC standard. The design of the substation communication network using IEC 61850 will assist when trying to predict the behavior of the network with regards to this specific protocol during maintenance and when there are faults in the communication network or IED’s. After the simulation of the DNP3 protocol and the IEC 61850 the throughput of DNP3 protocol was determined to be in the range (20 – 450) kbps and the throughput of IEC61850 protocol was determined to be in the range (1.6 – 16) Mbps.College of Engineering, Science and TechnologyM. Tech. (Electrical Engineering

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    Actas de la XIII Reunión Española sobre Criptología y Seguridad de la Información RECSI XIII : Alicante, 2-5 de septiembre de 2014

    Get PDF
    Si tuviéramos que elegir un conjunto de palabras clave para definir la sociedad actual, sin duda el término información sería uno de los más representativos. Vivimos en un mundo caracterizado por un continuo flujo de información en el que las Tecnologías de la Información y Comunicación (TIC) y las Redes Sociales desempeñan un papel relevante. En la Sociedad de la Información se generan gran variedad de datos en formato digital, siendo la protección de los mismos frente a accesos y usos no autorizados el objetivo principal de lo que conocemos como Seguridad de la Información. Si bien la Criptología es una herramienta tecnológica básica, dedicada al desarrollo y análisis de sistemas y protocolos que garanticen la seguridad de los datos, el espectro de tecnologías que intervienen en la protección de la información es amplio y abarca diferentes disciplinas. Una de las características de esta ciencia es su rápida y constante evolución, motivada en parte por los continuos avances que se producen en el terreno de la computación, especialmente en las últimas décadas. Sistemas, protocolos y herramientas en general considerados seguros en la actualidad dejarán de serlo en un futuro más o menos cercano, lo que hace imprescindible el desarrollo de nuevas herramientas que garanticen, de forma eficiente, los necesarios niveles de seguridad. La Reunión Española sobre Criptología y Seguridad de la Información (RECSI) es el congreso científico español de referencia en el ámbito de la Criptología y la Seguridad en las TIC, en el que se dan cita periódicamente los principales investigadores españoles y de otras nacionalidades en esta disciplina, con el fin de compartir los resultados más recientes de su investigación. Del 2 al 5 de septiembre de 2014 se celebrará la decimotercera edición en la ciudad de Alicante, organizada por el grupo de Criptología y Seguridad Computacional de la Universidad de Alicante. Las anteriores ediciones tuvieron lugar en Palma de Mallorca (1991), Madrid (1992), Barcelona (1994), Valladolid (1996), Torremolinos (1998), Santa Cruz de Tenerife (2000), Oviedo (2002), Leganés (2004), Barcelona (2006), Salamanca (2008), Tarragona (2010) y San Sebastián (2012)

    An architecture framework for enhanced wireless sensor network security

    Get PDF
    This thesis develops an architectural framework to enhance the security of Wireless Sensor Networks (WSNs) and provides the implementation proof through different security countermeasures, which can be used to establish secure WSNs, in a distributed and self-healing manner. Wireless Sensors are used to monitor and control environmental properties such as sound, acceleration, vibration, air pollutants, and temperature. Due to their limited resources in computation capability, memory and energy, their security schemes are susceptible to many kinds of security vulnerabilities. This thesis investigated all possible network attacks on WSNs and at the time of writing, 19 different types of attacks were identified, all of which are discussed including exposures to the attacks, and the impact of those attacks. The author then utilises this work to examine the ZigBee series, which are the new generation of wireless sensor network products with built-in layered security achieved by secure messaging using symmetric cryptography. However, the author was able to uniquely identify several security weaknesses in ZigBee by examining its protocol and launching the possible attacks. It was found that ZigBee is vulnerable to the following attacks, namely: eavesdropping, replay attack, physical tampering and Denial of Services (DoS). The author then provides solutions to improve the ZigBee security through its security schema, including an end-to-end WSN security framework, architecture design and sensor configuration, that can withstand all types of attacks on the WSN and mitigate ZigBee’s WSN security vulnerabilities
    corecore