2 research outputs found

    Low-Complexity Joint Temporal-Quality Scalability Rate Control for H.264/SVC

    Get PDF
    Rate control in scalable video coding (SVC) is a very challenging problem because of the inter-layer prediction structure, which makes developing an efficient rate-control algorithm complex and difficult. Little prior work is available for joint temporal-quality (T-Q) scalability considering the rate-distortion (R-D) dependence among the temporal and quality layers. However, most of the rate-control algorithms in SVC suffer from high computational complexity, growing significantly with the number of layers. In this paper, a single-pass joint temporal-quality rate-control algorithm is presented for H.264/SVC. In this algorithm, by analyzing the R-D dependence of joint T-Q scalability, Cauchy distribution-based rate-quantization, and distortion-quantization models, a set of empirical values are first derived to estimate the initial values of the R-D model parameters for the joint temporal and quality layers. Then, a novel prediction mechanism to update these model parameters is proposed to allocate the bit budgets efficiently among the temporal and quality layers, and hence to improve the performance of the proposed algorithm. Experimental results show that the proposed algorithm achieves better coding efficiency with low computational complexity compared with two other benchmark rate-control algorithms

    Efficient rate-quantization model for frame level rate control in spatially scalable video coding

    No full text
    corecore