77 research outputs found

    Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution

    Full text link
    Information reconciliation protocol has a significant effect on the secret key rate and maximal transmission distance of continuous-variable quantum key distribution (CV-QKD) systems. We propose an efficient rate-adaptive reconciliation protocol suitable for practical CV-QKD systems with time-varying quantum channel. This protocol changes the code rate of multi-edge type low density parity check codes, by puncturing (increasing the code rate) and shortening (decreasing the code rate) techniques, to enlarge the correctable signal-to-noise ratios regime, thus improves the overall reconciliation efficiency comparing to the original fixed rate reconciliation protocol. We verify our rate-adaptive reconciliation protocol with three typical code rate, i.e., 0.1, 0.05 and 0.02, the reconciliation efficiency keep around 93.5%, 95.4% and 96.4% for different signal-to-noise ratios, which shows the potential of implementing high-performance CV-QKD systems using single code rate matrix.Comment: 12 pages, 5 figure

    Continuous-variable QKD over 50km commercial fiber

    Full text link
    The continuous-variable version of quantum key distribution (QKD) offers the advantages (over discrete-variable systems) of higher secret key rates in metropolitan areas as well as the use of standard telecom components that can operate at room temperature. An important step in the real-world adoption of continuous-variable QKD is the deployment of field tests over commercial fibers. Here we report two different field tests of a continuous-variable QKD system through commercial fiber networks in Xi'an and Guangzhou over distances of 30.02 km (12.48 dB) and 49.85 km (11.62 dB), respectively. We achieve secure key rates two orders-of-magnitude higher than previous field test demonstrations. This is achieved by developing a fully automatic control system to create stable excess noise and by applying a rate-adaptive reconciliation protocol to achieve a high reconciliation efficiency with high success probability. Our results pave the way to achieving continuous-variable QKD in a metropolitan setting.Comment: 19 pages, 6 figure

    Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook

    Full text link
    The recent launch of the Micius quantum-enabled satellite heralds a major step forward for long-range quantum communication. Using single-photon discrete-variable quantum states, this exciting new development proves beyond any doubt that all of the quantum protocols previously deployed over limited ranges in terrestrial experiments can, in fact, be translated to global distances via the use of low-orbit satellites. In this work, we survey the imminent extension of space-based quantum communication to the continuous-variable regime - the quantum regime perhaps most closely related to classical wireless communications. The CV regime offers the potential for increased communication performance and represents the next major step forward for quantum communications and the development of the global quantum internet.Comment: Submitted to IEEE Communications Surveys and Tutorials. Contains updated reference

    Information Reconciliation for Continuous-Variable Quantum Key Distribution using Non-Binary Low-Density Parity-Check Codes

    Full text link
    An information reconciliation method for continuous-variable quantum key distribution with Gaussian modulation that is based on non-binary low-density parity-check (LDPC) codes is presented. Sets of regular and irregular LDPC codes with different code rates over the Galois fields GF(8)GF(8), GF(16)GF(16), GF(32)GF(32), and GF(64)GF(64) have been constructed. We have performed simulations to analyze the efficiency and the frame error rate using the sum-product algorithm. The proposed method achieves an efficiency between 0.940.94 and 0.980.98 if the signal-to-noise ratio is between 44 dB and 2424 dB.Comment: 23 pages, 7 figure

    High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code

    Full text link
    Error correction is a significant step in postprocessing of continuous-variable quantum key distribution system, which is used to make two distant legitimate parties share identical corrected keys. We propose an experiment demonstration of high speed error correction with multi-edge type low-density parity check (MET-LDPC) codes based on graphic processing unit (GPU). GPU supports to calculate the messages of MET-LDPC codes simultaneously and decode multiple codewords in parallel. We optimize the memory structure of parity check matrix and the belief propagation decoding algorithm to reduce computational complexity. Our results show that GPU-based decoding algorithm greatly improves the error correction speed. For the three typical code rate, i.e., 0.1, 0.05 and 0.02, when the block length is 10610^6 and the iteration number are 100, 150 and 200, the average error correction speed can be respectively achieved to 30.39Mbits/s (over three times faster than previous demonstrations), 21.23Mbits/s and 16.41Mbits/s with 64 codewords decoding in parallel, which supports high-speed real-time continuous-variable quantum key distribution system.Comment: 8 pages, 2 figure

    High Throughput and Low Cost LDPC Reconciliation for Quantum Key Distribution

    Full text link
    Reconciliation is a crucial procedure in post-processing of Quantum Key Distribution (QKD), which is used for correcting the error bits in sifted key strings. Although most studies about reconciliation of QKD focus on how to improve the efficiency, throughput optimizations have become the highlight in high-speed QKD systems. Many researchers adpot high cost GPU implementations to improve the throughput. In this paper, an alternative high throughput and efficiency solution implemented in low cost CPU is proposed. The main contribution of the research is the design of a quantized LDPC decoder including improved RCBP-based check node processing and saturation-oriented variable node processing. Experiment results show that the throughput up to 60Mbps is achieved using the bi-directional approach with reconciliation efficiency approaching to 1.1, which is the optimal combination of throughput and efficiency in Discrete-Variable QKD (DV-QKD). Meanwhile, the performance remains stable when Quantum Bit Error Rate (QBER) varies from 1% to 8%

    Adding artificial noise for code rate matching in continuous-variable quantum key distribution

    Full text link
    The reconciliation step of continuous-variable quantum key distribution protocols usually involves forward error correction codes. Matching the code rate and the signal-to-noise ratio (SNR) of the quantum channel is required to achieve the high reconciliation efficiencies that are crucial for long distance links. Puncturing and shortening is a way to adapt the code rate to the SNR at the cost of a slightly reduced reconciliation efficiencies. Instead of adapting the code rate to the SNR, we propose to add a controlled amount of artificial noise to the measured data, so that the resulting SNR could be reduced to match the given code rate. We show that our method can compete with puncturing and shortening and even outperform it in high-loss, high-excess noise scenarios

    Novel Reconciliation Protocol Based on Spinal Code for Continuous-variable Quantum Key Distribution

    Full text link
    Reconciliation is a crucial procedure in post-processing of continuous variable quantum key distribution (CV-QKD) system, which is used to make two distant legitimate parties share identical corrected keys. The adaptive reconciliation is necessary and important for practical systems to cope with the variable channel. Many researchers adopt the punctured LDPC codes to implement adaptive reconciliation. In this paper, a novel rateless reconciliation protocol based on spinal code is proposed, which can achieve a high-efficiency and adaptive reconciliation in a larger range of SNRs. Due to the short codes length and simple tructure, our protocol is easy to implement without the complex codes designs of fixed rate codes, e.g., LDPC codes. Meanwhile, the structure of our protocol is highly parallel, which is suitable for hardware implementation, thus it also has the potential of high-speed hardware implementation. Besides, the security of proposed protocol is proved in theory. Experiment results show that the reconciliation efficiency maintains around 95% for ranging SNRs in a larger range (0,0.5), even exceeds 96.5% at extremely low SNR (<= 0.03) by using this novel scheme. The proposed protocol makes the long-distance CV-QKD systems much easier and stable to perform a high-performance and adaptive reconciliation

    Feasibility Assessment For Practical Continuous Variable Quantum Key Distribution Over The Satellite-to-Earth Channel

    Full text link
    Currently, quantum key distribution (QKD) using continuous variable (CV) technology has only been demonstrated over short-range terrestrial links. Here we attempt to answer whether CV-QKD over the much longer satellite-to-Earth channel is feasible. To this end, we first review the concepts and technologies that will enable CV-QKD over the satellite-to-Earth channels. We then consider, in the infinite key limit, the simplest-to-deploy QKD protocols, the coherent state (CS) QKD protocol with homodyne detection and the CS-QKD protocol with heterodyne detection. We then focus on the CS-QKD protocol with heterodyne detection in the pragmatic setting of finite keys, where complete security against general attacks is known. We pay particular attention to the relevant noise terms in the satellite-to-Earth channel and their impact on the secret key rates. In system set-ups where diffraction dominates losses, we find that the main components of the total excess noise are the intensity fluctuations due to scintillation, and the time-of-arrival fluctuations between signal and local oscillator. We conclude that for a wide range of pragmatic system models, CS-QKD with information-theoretic security in the satellite-to-Earth channel is feasible.Comment: 16 pages, 6 figures, 4 tables, Closest to Published Versio

    Continuous-Variable Quantum Key Distribution with Rateless Reconciliation Protocol

    Full text link
    Information reconciliation is crucial for continuous-variable quantum key distribution (CV-QKD) because its performance affects the secret key rate and maximal secure transmission distance. Fixed-rate error correction codes limit the potential applications of the CV-QKD because of the difficulty of optimizing such codes for different low SNRs. In this paper, we propose a rateless reconciliation protocol combined multidimensional scheme with Raptor codes that not only maintains the rateless property but also achieves high efficiency in different SNRs using just one degree distribution. It significantly decreases the complexity of optimization and increases the robustness of the system. Using this protocol, the CV-QKD system can operate with the optimal modulation variance which maximizes the secret key rate. Simulation results show that the proposed protocol can achieve reconciliation efficiency of more than 95% within the range of SNR from -20 dB to 0 dB. It also shows that we can obtain a high secret key rate at arbitrary distances in a certain range and achieve a secret key rate of about 5*10^(-4) bits/pulse at a maximum distance of 132 km (corresponding SNR is -20dB) that is higher than previous works. The proposed protocol can maintain high efficient key extraction under the wide range of SNRs and paves the way toward the practical application of CV-QKD systems in flexible scenarios.Comment: 10 pages, 6 figure
    corecore