1,090 research outputs found

    Scalable quantum search using trapped ions

    Full text link
    We propose a scalable implementation of Grover's quantum search algorithm in a trapped-ion quantum information processor. The system is initialized in an entangled Dicke state by using simple adiabatic techniques. The inversion-about-average and the oracle operators take the form of single off-resonant laser pulses, addressing, respectively, all and half of the ions in the trap. This is made possible by utilizing the physical symmetrie of the trapped-ion linear crystal. The physical realization of the algorithm represents a dramatic simplification: each logical iteration (oracle and inversion about average) requires only two physical interaction steps, in contrast to the large number of concatenated gates required by previous approaches. This does not only facilitate the implementation, but also increases the overall fidelity of the algorithm.Comment: 6 pages, 2 figure

    Detecting genuine multipartite correlations in terms of the rank of coefficient matrix

    Full text link
    We propose a method to detect genuine quantum correlation for arbitrary quantum state in terms of the rank of coefficient matrices associated with the pure state. We then derive a necessary and sufficient condition for a quantum state to possess genuine correlation, namely that all corresponding coefficient matrices have rank larger than one. We demonstrate an approach to decompose the genuine quantum correlated state with high rank coefficient matrix into the form of product states with no genuine quantum correlation for pure state.Comment: 5 pages, 1 figure. Comments are welcom

    Generalized parity measurements

    Full text link
    Measurements play an important role in quantum computing (QC), by either providing the nonlinearity required for two-qubit gates (linear optics QC), or by implementing a quantum algorithm using single-qubit measurements on a highly entangled initial state (cluster state QC). Parity measurements can be used as building blocks for preparing arbitrary stabilizer states, and, together with 1-qubit gates are universal for quantum computing. Here we generalize parity gates by using a higher dimensional (qudit) ancilla. This enables us to go beyond the stabilizer/graph state formalism and prepare other types of multi-particle entangled states. The generalized parity module introduced here can prepare in one-shot, heralded by the outcome of the ancilla, a large class of entangled states, including GHZ_n, W_n, Dicke states D_{n,k}, and, more generally, certain sums of Dicke states, like G_n states used in secret sharing. For W_n states it provides an exponential gain compared to linear optics based methods.Comment: 7 pages, 1 fig; updated to the published versio

    Generalized spin squeezing inequalities in NN qubit systems: theory and experiment

    Full text link
    We present detailed derivations, various improvements and application to concrete experimental data of spin squeezing inequalities formulated recently by some of us [Phys. Rev. Lett. {\bf 95}, 120502 (2005)]. These inequalities generalize the concept of the spin squeezing parameter, and provide necessary and sufficient conditions for genuine 2-, or 3- qubit entanglement for symmetric states, and sufficient entanglement condition for general NN-qubit states. We apply our method to theoretical study of Dicke states, and, in particular, to WW-states of NN qubits. Then, we analyze the recently experimentally generated 7- and 8-ion WW-states [Nature {\bf 438}, 643 (2005)]. We also present some novel details concerning this experiment. Finally, we improve criteria for detection of genuine tripartite entanglement based on entanglement witnesses.Comment: Final versio
    corecore