1,007 research outputs found

    A Low Density Lattice Decoder via Non-Parametric Belief Propagation

    Full text link
    The recent work of Sommer, Feder and Shalvi presented a new family of codes called low density lattice codes (LDLC) that can be decoded efficiently and approach the capacity of the AWGN channel. A linear time iterative decoding scheme which is based on a message-passing formulation on a factor graph is given. In the current work we report our theoretical findings regarding the relation between the LDLC decoder and belief propagation. We show that the LDLC decoder is an instance of non-parametric belief propagation and further connect it to the Gaussian belief propagation algorithm. Our new results enable borrowing knowledge from the non-parametric and Gaussian belief propagation domains into the LDLC domain. Specifically, we give more general convergence conditions for convergence of the LDLC decoder (under the same assumptions of the original LDLC convergence analysis). We discuss how to extend the LDLC decoder from Latin square to full rank, non-square matrices. We propose an efficient construction of sparse generator matrix and its matching decoder. We report preliminary experimental results which show our decoder has comparable symbol to error rate compared to the original LDLC decoder.%Comment: Submitted for publicatio

    Finite Dimensional Infinite Constellations

    Full text link
    In the setting of a Gaussian channel without power constraints, proposed by Poltyrev, the codewords are points in an n-dimensional Euclidean space (an infinite constellation) and the tradeoff between their density and the error probability is considered. The capacity in this setting is the highest achievable normalized log density (NLD) with vanishing error probability. This capacity as well as error exponent bounds for this setting are known. In this work we consider the optimal performance achievable in the fixed blocklength (dimension) regime. We provide two new achievability bounds, and extend the validity of the sphere bound to finite dimensional infinite constellations. We also provide asymptotic analysis of the bounds: When the NLD is fixed, we provide asymptotic expansions for the bounds that are significantly tighter than the previously known error exponent results. When the error probability is fixed, we show that as n grows, the gap to capacity is inversely proportional (up to the first order) to the square-root of n where the proportion constant is given by the inverse Q-function of the allowed error probability, times the square root of 1/2. In an analogy to similar result in channel coding, the dispersion of infinite constellations is 1/2nat^2 per channel use. All our achievability results use lattices and therefore hold for the maximal error probability as well. Connections to the error exponent of the power constrained Gaussian channel and to the volume-to-noise ratio as a figure of merit are discussed. In addition, we demonstrate the tightness of the results numerically and compare to state-of-the-art coding schemes.Comment: 54 pages, 13 figures. Submitted to IEEE Transactions on Information Theor
    • …
    corecore