3,869 research outputs found

    Streaming Small-Footprint Keyword Spotting using Sequence-to-Sequence Models

    Full text link
    We develop streaming keyword spotting systems using a recurrent neural network transducer (RNN-T) model: an all-neural, end-to-end trained, sequence-to-sequence model which jointly learns acoustic and language model components. Our models are trained to predict either phonemes or graphemes as subword units, thus allowing us to detect arbitrary keyword phrases, without any out-of-vocabulary words. In order to adapt the models to the requirements of keyword spotting, we propose a novel technique which biases the RNN-T system towards a specific keyword of interest. Our systems are compared against a strong sequence-trained, connectionist temporal classification (CTC) based "keyword-filler" baseline, which is augmented with a separate phoneme language model. Overall, our RNN-T system with the proposed biasing technique significantly improves performance over the baseline system.Comment: To appear in Proceedings of IEEE ASRU 201

    Transparent pronunciation scoring using articulatorily weighted phoneme edit distance

    Full text link
    For researching effects of gamification in foreign language learning for children in the "Say It Again, Kid!" project we developed a feedback paradigm that can drive gameplay in pronunciation learning games. We describe our scoring system based on the difference between a reference phone sequence and the output of a multilingual CTC phoneme recogniser. We present a white-box scoring model of mapped weighted Levenshtein edit distance between reference and error with error weights for articulatory differences computed from a training set of scored utterances. The system can produce a human-readable list of each detected mispronunciation's contribution to the utterance score. We compare our scoring method to established black box methods.Comment: Submitted to Interspeech 201

    Large-Scale Visual Speech Recognition

    Full text link
    This work presents a scalable solution to open-vocabulary visual speech recognition. To achieve this, we constructed the largest existing visual speech recognition dataset, consisting of pairs of text and video clips of faces speaking (3,886 hours of video). In tandem, we designed and trained an integrated lipreading system, consisting of a video processing pipeline that maps raw video to stable videos of lips and sequences of phonemes, a scalable deep neural network that maps the lip videos to sequences of phoneme distributions, and a production-level speech decoder that outputs sequences of words. The proposed system achieves a word error rate (WER) of 40.9% as measured on a held-out set. In comparison, professional lipreaders achieve either 86.4% or 92.9% WER on the same dataset when having access to additional types of contextual information. Our approach significantly improves on other lipreading approaches, including variants of LipNet and of Watch, Attend, and Spell (WAS), which are only capable of 89.8% and 76.8% WER respectively

    The challenges of SVM optimization using Adaboost on a phoneme recognition problem

    Full text link
    The use of digital technology is growing at a very fast pace which led to the emergence of systems based on the cognitive infocommunications. The expansion of this sector impose the use of combining methods in order to ensure the robustness in cognitive systems

    On The Inductive Bias of Words in Acoustics-to-Word Models

    Full text link
    Acoustics-to-word models are end-to-end speech recognizers that use words as targets without relying on pronunciation dictionaries or graphemes. These models are notoriously difficult to train due to the lack of linguistic knowledge. It is also unclear how the amount of training data impacts the optimization and generalization of such models. In this work, we study the optimization and generalization of acoustics-to-word models under different amounts of training data. In addition, we study three types of inductive bias, leveraging a pronunciation dictionary, word boundary annotations, and constraints on word durations. We find that constraining word durations leads to the most improvement. Finally, we analyze the word embedding space learned by the model, and find that the space has a structure dominated by the pronunciation of words. This suggests that the contexts of words, instead of their phonetic structure, should be the future focus of inductive bias in acoustics-to-word models

    Spatial Concept Acquisition for a Mobile Robot that Integrates Self-Localization and Unsupervised Word Discovery from Spoken Sentences

    Full text link
    In this paper, we propose a novel unsupervised learning method for the lexical acquisition of words related to places visited by robots, from human continuous speech signals. We address the problem of learning novel words by a robot that has no prior knowledge of these words except for a primitive acoustic model. Further, we propose a method that allows a robot to effectively use the learned words and their meanings for self-localization tasks. The proposed method is nonparametric Bayesian spatial concept acquisition method (SpCoA) that integrates the generative model for self-localization and the unsupervised word segmentation in uttered sentences via latent variables related to the spatial concept. We implemented the proposed method SpCoA on SIGVerse, which is a simulation environment, and TurtleBot2, which is a mobile robot in a real environment. Further, we conducted experiments for evaluating the performance of SpCoA. The experimental results showed that SpCoA enabled the robot to acquire the names of places from speech sentences. They also revealed that the robot could effectively utilize the acquired spatial concepts and reduce the uncertainty in self-localization.Comment: This paper was accepted in the IEEE Transactions on Cognitive and Developmental Systems. (04-May-2016

    Unsupervised speech representation learning using WaveNet autoencoders

    Full text link
    We consider the task of unsupervised extraction of meaningful latent representations of speech by applying autoencoding neural networks to speech waveforms. The goal is to learn a representation able to capture high level semantic content from the signal, e.g.\ phoneme identities, while being invariant to confounding low level details in the signal such as the underlying pitch contour or background noise. Since the learned representation is tuned to contain only phonetic content, we resort to using a high capacity WaveNet decoder to infer information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the kind of constraint that is applied to the latent representation. We compare three variants: a simple dimensionality reduction bottleneck, a Gaussian Variational Autoencoder (VAE), and a discrete Vector Quantized VAE (VQ-VAE). We analyze the quality of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately reconstruct individual spectrogram frames. Moreover, for discrete encodings extracted using the VQ-VAE, we measure the ease of mapping them to phonemes. We introduce a regularization scheme that forces the representations to focus on the phonetic content of the utterance and report performance comparable with the top entries in the ZeroSpeech 2017 unsupervised acoustic unit discovery task.Comment: Accepted to IEEE TASLP, final version available at http://dx.doi.org/10.1109/TASLP.2019.293886

    Building DNN Acoustic Models for Large Vocabulary Speech Recognition

    Full text link
    Deep neural networks (DNNs) are now a central component of nearly all state-of-the-art speech recognition systems. Building neural network acoustic models requires several design decisions including network architecture, size, and training loss function. This paper offers an empirical investigation on which aspects of DNN acoustic model design are most important for speech recognition system performance. We report DNN classifier performance and final speech recognizer word error rates, and compare DNNs using several metrics to quantify factors influencing differences in task performance. Our first set of experiments use the standard Switchboard benchmark corpus, which contains approximately 300 hours of conversational telephone speech. We compare standard DNNs to convolutional networks, and present the first experiments using locally-connected, untied neural networks for acoustic modeling. We additionally build systems on a corpus of 2,100 hours of training data by combining the Switchboard and Fisher corpora. This larger corpus allows us to more thoroughly examine performance of large DNN models -- with up to ten times more parameters than those typically used in speech recognition systems. Our results suggest that a relatively simple DNN architecture and optimization technique produces strong results. These findings, along with previous work, help establish a set of best practices for building DNN hybrid speech recognition systems with maximum likelihood training. Our experiments in DNN optimization additionally serve as a case study for training DNNs with discriminative loss functions for speech tasks, as well as DNN classifiers more generally

    Speech Recognition Front End Without Information Loss

    Full text link
    Speech representation and modelling in high-dimensional spaces of acoustic waveforms, or a linear transformation thereof, is investigated with the aim of improving the robustness of automatic speech recognition to additive noise. The motivation behind this approach is twofold: (i) the information in acoustic waveforms that is usually removed in the process of extracting low-dimensional features might aid robust recognition by virtue of structured redundancy analogous to channel coding, (ii) linear feature domains allow for exact noise adaptation, as opposed to representations that involve non-linear processing which makes noise adaptation challenging. Thus, we develop a generative framework for phoneme modelling in high-dimensional linear feature domains, and use it in phoneme classification and recognition tasks. Results show that classification and recognition in this framework perform better than analogous PLP and MFCC classifiers below 18 dB SNR. A combination of the high-dimensional and MFCC features at the likelihood level performs uniformly better than either of the individual representations across all noise levels

    Speech Recognition by Machine, A Review

    Full text link
    This paper presents a brief survey on Automatic Speech Recognition and discusses the major themes and advances made in the past 60 years of research, so as to provide a technological perspective and an appreciation of the fundamental progress that has been accomplished in this important area of speech communication. After years of research and development the accuracy of automatic speech recognition remains one of the important research challenges (e.g., variations of the context, speakers, and environment).The design of Speech Recognition system requires careful attentions to the following issues: Definition of various types of speech classes, speech representation, feature extraction techniques, speech classifiers, database and performance evaluation. The problems that are existing in ASR and the various techniques to solve these problems constructed by various research workers have been presented in a chronological order. Hence authors hope that this work shall be a contribution in the area of speech recognition. The objective of this review paper is to summarize and compare some of the well known methods used in various stages of speech recognition system and identify research topic and applications which are at the forefront of this exciting and challenging field.Comment: 25 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS December 2009, ISSN 1947 5500, http://sites.google.com/site/ijcsis
    • …
    corecore