949 research outputs found

    Generalized Spatial Modulation in Large-Scale Multiuser MIMO Systems

    Full text link
    Generalized spatial modulation (GSM) uses ntn_t transmit antenna elements but fewer transmit radio frequency (RF) chains, nrfn_{rf}. Spatial modulation (SM) and spatial multiplexing are special cases of GSM with nrf=1n_{rf}=1 and nrf=ntn_{rf}=n_t, respectively. In GSM, in addition to conveying information bits through nrfn_{rf} conventional modulation symbols (for example, QAM), the indices of the nrfn_{rf} active transmit antennas also convey information bits. In this paper, we investigate {\em GSM for large-scale multiuser MIMO communications on the uplink}. Our contributions in this paper include: (ii) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and (iiii) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10βˆ’310^{-3}. Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.Comment: IEEE Trans. on Wireless Communications, accepte

    Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations

    Full text link
    Large-scale (or massive) multiple-input multiple-output (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems, based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose - to the best of our knowledge - the first VLSI design enabling high-throughput data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection. We analyze the associated error, and we compare its performance and complexity to those of an exact linear detector. We present corresponding VLSI architectures, which perform exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user configurations. Reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale MIMO system. We finally provide a performance/complexity trade-off comparison using the presented FPGA designs, which reveals that the detector circuit of choice is determined by the ratio between BS antennas and users, as well as the desired error-rate performance.Comment: To appear in the IEEE Journal of Selected Topics in Signal Processin
    • …
    corecore