3 research outputs found

    Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels

    Full text link
    In this work, we consider efficient maximum-likelihood decoding of linear block codes for small-to-moderate block lengths. The presented approach is a branch-and-bound algorithm using the cutting-plane approach of Zhang and Siegel (IEEE Trans. Inf. Theory, 2012) for obtaining lower bounds. We have compared our proposed algorithm to the state-of-the-art commercial integer program solver CPLEX, and for all considered codes our approach is faster for both low and high signal-to-noise ratios. For instance, for the benchmark (155,64) Tanner code our algorithm is more than 11 times as fast as CPLEX for an SNR of 1.0 dB on the additive white Gaussian noise channel. By a small modification, our algorithm can be used to calculate the minimum distance, which we have again verified to be much faster than using the CPLEX solver.Comment: Submitted to 2014 International Symposium on Information Theory. 5 Pages. Accepte

    Introduction to Mathematical Programming-Based Error-Correction Decoding

    Full text link
    Decoding error-correctiong codes by methods of mathematical optimization, most importantly linear programming, has become an important alternative approach to both algebraic and iterative decoding methods since its introduction by Feldman et al. At first celebrated mainly for its analytical powers, real-world applications of LP decoding are now within reach thanks to most recent research. This document gives an elaborate introduction into both mathematical optimization and coding theory as well as a review of the contributions by which these two areas have found common ground.Comment: LaTeX sources maintained here: https://github.com/supermihi/lpdintr
    corecore