28,010 research outputs found

    Efficient linear combination for distant n-gram models

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceThe objective of this paper is to present a large study concerning the use of distant language models. In order to combine efficiently distant and classical models, an adaptation of the back-off principle is made. Also, we show the importance of each part of a history for the prediction. In fact, each sub-history is analyzed in order to estimate its importance in terms of prediction and then a weight is associated to each class of sub-histories. Therefore, the combined models take into account the features of each history's part and not the whole history as made in other works. The contribution of distant n-gram models in terms of perplexity is significant and improves the results by 12.8%. Making the linear combination depending on sub-histories achieves an improvement of 5.3%5.3\% in comparison to classical linear combination

    Approximation errors of online sparsification criteria

    Full text link
    Many machine learning frameworks, such as resource-allocating networks, kernel-based methods, Gaussian processes, and radial-basis-function networks, require a sparsification scheme in order to address the online learning paradigm. For this purpose, several online sparsification criteria have been proposed to restrict the model definition on a subset of samples. The most known criterion is the (linear) approximation criterion, which discards any sample that can be well represented by the already contributing samples, an operation with excessive computational complexity. Several computationally efficient sparsification criteria have been introduced in the literature, such as the distance, the coherence and the Babel criteria. In this paper, we provide a framework that connects these sparsification criteria to the issue of approximating samples, by deriving theoretical bounds on the approximation errors. Moreover, we investigate the error of approximating any feature, by proposing upper-bounds on the approximation error for each of the aforementioned sparsification criteria. Two classes of features are described in detail, the empirical mean and the principal axes in the kernel principal component analysis.Comment: 10 page

    The Microsoft 2016 Conversational Speech Recognition System

    Full text link
    We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. The best single system uses a ResNet architecture acoustic model with RNNLM rescoring, and achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The combined system has an error rate of 6.2%, representing an improvement over previously reported results on this benchmark task

    Efficient Estimation of Word Representations in Vector Space

    Full text link
    We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities

    Recurrent Memory Networks for Language Modeling

    Get PDF
    Recurrent Neural Networks (RNN) have obtained excellent result in many natural language processing (NLP) tasks. However, understanding and interpreting the source of this success remains a challenge. In this paper, we propose Recurrent Memory Network (RMN), a novel RNN architecture, that not only amplifies the power of RNN but also facilitates our understanding of its internal functioning and allows us to discover underlying patterns in data. We demonstrate the power of RMN on language modeling and sentence completion tasks. On language modeling, RMN outperforms Long Short-Term Memory (LSTM) network on three large German, Italian, and English dataset. Additionally we perform in-depth analysis of various linguistic dimensions that RMN captures. On Sentence Completion Challenge, for which it is essential to capture sentence coherence, our RMN obtains 69.2% accuracy, surpassing the previous state-of-the-art by a large margin.Comment: 8 pages, 6 figures. Accepted at NAACL 201

    Analyzing sparse dictionaries for online learning with kernels

    Full text link
    Many signal processing and machine learning methods share essentially the same linear-in-the-parameter model, with as many parameters as available samples as in kernel-based machines. Sparse approximation is essential in many disciplines, with new challenges emerging in online learning with kernels. To this end, several sparsity measures have been proposed in the literature to quantify sparse dictionaries and constructing relevant ones, the most prolific ones being the distance, the approximation, the coherence and the Babel measures. In this paper, we analyze sparse dictionaries based on these measures. By conducting an eigenvalue analysis, we show that these sparsity measures share many properties, including the linear independence condition and inducing a well-posed optimization problem. Furthermore, we prove that there exists a quasi-isometry between the parameter (i.e., dual) space and the dictionary's induced feature space.Comment: 10 page
    corecore