185 research outputs found

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Formal Verification and In-Situ Test of Analog and Mixed-Signal Circuits

    Get PDF
    As CMOS technologies continuously scale down, designing robust analog and mixed-signal (AMS) circuits becomes increasingly difficult. Consequently, there are pressing needs for AMS design checking techniques, more specifically design verification and design for testability (DfT). The purpose of verification is to ensure that the performance of an AMS design meets its specification under process, voltage and temperature (PVT) variations and different working conditions, while DfT techniques aim at embedding testability into the design, by adding auxiliary circuitries for testing purpose. This dissertation focuses on improving the robustness of AMS designs in highly scaled technologies, by developing novel formal verification and in-situ test techniques. Compared with conventional AMS verification that relies more on heuristically chosen simulations, formal verification provides a mathematically rigorous way of checking the target design property. A formal verification framework is proposed that incorporates nonlinear SMT solving techniques and simulation exploration to efficiently verify the dynamic properties of AMS designs. A powerful Bayesian inference based technique is applied to dynamically tradeoff between the costs of simulation and nonlinear SMT. The feasibility and efficacy of the proposed methodology are demonstrated on the verification of lock time specification of a charge-pump PLL. The powerful and low-cost digital processing capabilities of today?s CMOS technologies are enabling many new in-situ test schemes in a mixed-signal environment. First, a novel two-level structure of GRO-PVDL is proposed for on-chip jitter testing of high-speed high-resolution applications with a gated ring oscillator (GRO) at the first level to provide a coarse measurement and a Vernier-style structure at the second level to further measure the residue from the first level with a fine resolution. With the feature of quantization noise shaping, an effective resolution of 0.8ps can be achieved using a 90nm CMOS technology. Second, the reconfigurability of recent all-digital PLL designs is exploited to provide in-situ output jitter test and diagnosis abilities under multiple parametric variations of key analog building blocks. As an extension, an in-situ test scheme is proposed to provide online testing for all-digital PLL based polar transmitters

    Algorithms for Verification of Analog and Mixed-Signal Integrated Circuits

    Get PDF
    Over the past few decades, the tremendous growth in the complexity of analog and mixed-signal (AMS) systems has posed great challenges to AMS verification, resulting in a rapidly growing verification gap. Existing formal methods provide appealing completeness and reliability, yet they suffer from their limited efficiency and scalability. Data oriented machine learning based methods offer efficient and scalable solutions but do not guarantee completeness or full coverage. Additionally, the trend towards shorter time to market for AMS chips urges the development of efficient verification algorithms to accelerate with the joint design and testing phases. This dissertation envisions a hierarchical and hybrid AMS verification framework by consolidating assorted algorithms to embrace efficiency, scalability and completeness in a statistical sense. Leveraging diverse advantages from various verification techniques, this dissertation develops algorithms in different categories. In the context of formal methods, this dissertation proposes a generic and comprehensive model abstraction paradigm to model AMS content with a unifying analog representation. Moreover, an algorithm is proposed to parallelize reachability analysis by decomposing AMS systems into subsystems with lower complexity, and dividing the circuit's reachable state space exploration, which is formulated as a satisfiability problem, into subproblems with a reduced number of constraints. The proposed modeling method and the hierarchical parallelization enhance the efficiency and scalability of reachability analysis for AMS verification. On the subject of learning based method, the dissertation proposes to convert the verification problem into a binary classification problem solved using support vector machine (SVM) based learning algorithms. To reduce the need of simulations for training sample collection, an active learning strategy based on probabilistic version space reduction is proposed to perform adaptive sampling. An expansion of the active learning strategy for the purpose of conservative prediction is leveraged to minimize the occurrence of false negatives. Moreover, another learning based method is proposed to characterize AMS systems with a sparse Bayesian learning regression model. An implicit feature weighting mechanism based on the kernel method is embedded in the Bayesian learning model for concurrent quantification of influence of circuit parameters on the targeted specification, which can be efficiently solved in an iterative method similar to the expectation maximization (EM) algorithm. Besides, the achieved sparse parameter weighting offers favorable assistance to design analysis and test optimization

    Test analysis & fault simulation of microfluidic systems

    Get PDF
    This work presents a design, simulation and test methodology for microfluidic systems, with particular focus on simulation for test. A Microfluidic Fault Simulator (MFS) has been created based around COMSOL which allows a fault-free system model to undergo fault injection and provide test measurements. A post MFS test analysis procedure is also described.A range of fault-free system simulations have been cross-validated to experimental work to gauge the accuracy of the fundamental simulation approach prior to further investigation and development of the simulation and test procedure.A generic mechanism, termed a fault block, has been developed to provide fault injection and a method of describing a low abstraction behavioural fault model within the system. This technique has allowed the creation of a fault library containing a range of different microfluidic fault conditions. Each of the fault models has been cross-validated to experimental conditions or published results to determine their accuracy.Two test methods, namely, impedance spectroscopy and Levich electro-chemical sensors have been investigated as general methods of microfluidic test, each of which has been shown to be sensitive to a multitude of fault. Each method has successfully been implemented within the simulation environment and each cross-validated by first-hand experimentation or published work.A test analysis procedure based around the Neyman-Pearson criterion has been developed to allow a probabilistic metric for each test applied for a given fault condition, providing a quantitive assessment of each test. These metrics are used to analyse the sensitivity of each test method, useful when determining which tests to employ in the final system. Furthermore, these probabilistic metrics may be combined to provide a fault coverage metric for the complete system.The complete MFS method has been applied to two system cases studies; a hydrodynamic “Y” channel and a flow cytometry system for prognosing head and neck cancer.Decision trees are trained based on the test measurement data and fault conditions as a means of classifying the systems fault condition state. The classification rules created by the decision trees may be displayed graphically or as a set of rules which can be loaded into test instrumentation. During the course of this research a high voltage power supply instrument has been developed to aid electro-osmotic experimentation and an impedance spectrometer to provide embedded test

    Fault-based Analysis of Industrial Cyber-Physical Systems

    Get PDF
    The fourth industrial revolution called Industry 4.0 tries to bridge the gap between traditional Electronic Design Automation (EDA) technologies and the necessity of innovating in many indus- trial fields, e.g., automotive, avionic, and manufacturing. This complex digitalization process in- volves every industrial facility and comprises the transformation of methodologies, techniques, and tools to improve the efficiency of every industrial process. The enhancement of functional safety in Industry 4.0 applications needs to exploit the studies related to model-based and data-driven anal- yses of the deployed Industrial Cyber-Physical System (ICPS). Modeling an ICPS is possible at different abstraction levels, relying on the physical details included in the model and necessary to describe specific system behaviors. However, it is extremely complicated because an ICPS is com- posed of heterogeneous components related to different physical domains, e.g., digital, electrical, and mechanical. In addition, it is also necessary to consider not only nominal behaviors but even faulty behaviors to perform more specific analyses, e.g., predictive maintenance of specific assets. Nevertheless, these faulty data are usually not present or not available directly from the industrial machinery. To overcome these limitations, constructing a virtual model of an ICPS extended with different classes of faults enables the characterization of faulty behaviors of the system influenced by different faults. In literature, these topics are addressed with non-uniformly approaches and with the absence of standardized and automatic methodologies for describing and simulating faults in the different domains composing an ICPS. This thesis attempts to overcome these state-of-the-art gaps by proposing novel methodologies, techniques, and tools to: model and simulate analog and multi-domain systems; abstract low-level models to higher-level behavioral models; and monitor industrial systems based on the Industrial Internet of Things (IIOT) paradigm. Specifically, the proposed contributions involve the exten- sion of state-of-the-art fault injection practices to improve the ICPSs safety, the development of frameworks for safety operations automatization, and the definition of a monitoring framework for ICPSs. Overall, fault injection in analog and digital models is the state of the practice to en- sure functional safety, as mentioned in the ISO 26262 standard specific for the automotive field. Starting from state-of-the-art defects defined for analog descriptions, new defects are proposed to enhance the IEEE P2427 draft standard for analog defect modeling and coverage. Moreover, dif- ferent techniques to abstract a transistor-level model to a behavioral model are proposed to speed up the simulation of faulty circuits. Therefore, unlike the electrical domain, there is no extensive use of fault injection techniques in the mechanical one. Thus, extending the fault injection to the mechanical and thermal fields allows for supporting the definition and evaluation of more reliable safety mechanisms. Hence, a taxonomy of mechanical faults is derived from the electrical domain by exploiting the physical analogies. Furthermore, specific tools are built for automatically instru- menting different descriptions with multi-domain faults. The entire work is proposed as a basis for supporting the creation of increasingly resilient and secure ICPS that need to preserve functional safety in any operating context

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Design of a phase locked loop based clocking circuit for high speed serial link applications

    Get PDF
    Technology scaling and unprecedented growth in demand for ubiquitous, fast, robust computing have been the driving forces leading the innovations in high-speed interfaces. With the rise of heavy duty data centers to handheld mobile devices, the desire for faster, low-power integrated inter-IC communication protocols is at an all-time high and has led the roadmap of the semiconductor industry, making it one of the fastest growing yet fiercely competitive industries. With the growing needs for ultra-low power yet multi-Gbps signaling in both wired as well as wireline applications, integrated systems on chip (SoCs) have become mainstream critical components in modern computing systems. The ability to process and access 'big-data' is the fundamental demand in modern society where every second saved in prompt communication as well as computation of information is critical. In order to meet these needs of fast, robust signaling over the same old ''lossy'' channels, the clock-frequencies need to scale accordingly and clever I/O links need to be developed. The most crucial component of any high-speed I/O link is the clocking circuitry: clock generator at the transmit (TX) end and clock-recovery unit on the receive (RX) end. This thesis provides an in-depth tutorial on circuit design, analysis and simulation of on-chip PLL based clocking generator circuits for high-speed serial link applications. An overview of high-speed links, along with the basic building blocks that make up a serial link, is presented. The fundamentals of PLLs are introduced and a complete guide to analysis and simulation of a charge-pump phase-locked loop based clocking circuit at both behavioral as well as transistor levels is presented for use as a synthesizer in a serial link. Finally, a survey of potential future research areas to explore for both PLLs in high-speed links as well as the complete serial link is provided with an emphasis on signal integrity applications for future students pursuing graduate studies in the fields of Signal Integrity and Mixed-Signal IC Design

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems
    • …
    corecore