785 research outputs found

    OLAP over Probabilistic Data Cubes II:Parallel Materialization and Extended Aggregates

    Get PDF

    An Open Source Based Data Warehouse Architecture to Support Decision Making in the Tourism Sector

    Get PDF
    In this paper an alternative Tourism oriented Data Warehousing architecture is proposed which makes use of the most recent free and open source technologies like Java, Postgresql and XML. Such architecture's aim will be to support the decision making process and giving an integrated view of the whole Tourism reality in an established context (local, regional, national, etc.) without requesting big investments for getting the necessary software.Tourism, Data warehousing architecture

    Analytical Queries: A Comprehensive Survey

    Full text link
    Modern hardware heterogeneity brings efficiency and performance opportunities for analytical query processing. In the presence of continuous data volume and complexity growth, bridging the gap between recent hardware advancements and the data processing tools ecosystem is paramount for improving the speed of ETL and model development. In this paper, we present a comprehensive overview of existing analytical query processing approaches as well as the use and design of systems that use heterogeneous hardware for the task. We then analyze state-of-the-art solutions and identify missing pieces. The last two chapters discuss the identified problems and present our view on how the ecosystem should evolve

    Database Learning: Toward a Database that Becomes Smarter Every Time

    Full text link
    In today's databases, previous query answers rarely benefit answering future queries. For the first time, to the best of our knowledge, we change this paradigm in an approximate query processing (AQP) context. We make the following observation: the answer to each query reveals some degree of knowledge about the answer to another query because their answers stem from the same underlying distribution that has produced the entire dataset. Exploiting and refining this knowledge should allow us to answer queries more analytically, rather than by reading enormous amounts of raw data. Also, processing more queries should continuously enhance our knowledge of the underlying distribution, and hence lead to increasingly faster response times for future queries. We call this novel idea---learning from past query answers---Database Learning. We exploit the principle of maximum entropy to produce answers, which are in expectation guaranteed to be more accurate than existing sample-based approximations. Empowered by this idea, we build a query engine on top of Spark SQL, called Verdict. We conduct extensive experiments on real-world query traces from a large customer of a major database vendor. Our results demonstrate that Verdict supports 73.7% of these queries, speeding them up by up to 23.0x for the same accuracy level compared to existing AQP systems.Comment: This manuscript is an extended report of the work published in ACM SIGMOD conference 201
    • 

    corecore