144 research outputs found

    CROCHET: Checkpoint and Rollback via Lightweight Heap Traversal on Stock JVMs

    Get PDF
    Checkpoint/rollback (CR) mechanisms create snapshots of the state of a running application, allowing it to later be restored to that checkpointed snapshot. Support for checkpoint/rollback enables many program analyses and software engineering techniques, including test generation, fault tolerance, and speculative execution. Fully automatic CR support is built into some modern operating systems. However, such systems perform checkpoints at the coarse granularity of whole pages of virtual memory, which imposes relatively high overhead to incrementally capture the changing state of a process, and makes it difficult for applications to checkpoint only some logical portions of their state. CR systems implemented at the application level and with a finer granularity typically require complex developer support to identify: (1) where checkpoints can take place, and (2) which program state needs to be copied. A popular compromise is to implement CR support in managed runtime environments, e.g. the Java Virtual Machine (JVM), but this typically requires specialized, non-standard runtime environments, limiting portability and adoption of this approach. In this paper, we present a novel approach for Checkpoint ROllbaCk via lightweight HEap Traversal (Crochet), which enables fully automatic fine-grained lightweight checkpoints within unmodified commodity JVMs (specifically Oracle\u27s HotSpot and OpenJDK). Leveraging key insights about the internal design common to modern JVMs, Crochet works entirely through bytecode rewriting and standard debug APIs, utilizing special proxy objects to perform a lazy heap traversal that starts at the root references and traverses the heap as objects are accessed, copying or restoring state as needed and removing each proxy immediately after it is used. We evaluated Crochet on the DaCapo benchmark suite, finding it to have very low runtime overhead in steady state (ranging from no overhead to 1.29x slowdown), and that it often outperforms a state-of-the-art system-level checkpoint tool when creating large checkpoints

    Resource-Efficient Replication and Migration of Virtual Machines.

    Full text link
    Continuous replication and live migration of Virtual Machines (VMs) are two vital tools in a virtualized environment, but they are resource-expensive. Continuously replicating a VM's checkpointed state to a backup host maintains high-availability (HA) of the VM despite host failures, but checkpoint replication can generate significant network traffic. Each replicated VM also incurs a 100% memory overhead, since the backup unproductively reserves the same amount of memory to hold the redundant VM state. Live migration, though being widely used for load-balancing, power-saving, etc., can also generate excessive network traffic, by transferring VM state iteratively. In addition, it can incur a long completion time and degrade application performance. This thesis explores ways to replicate VMs for HA using resources efficiently, and to migrate VMs fast, with minimal execution disruption and using resources efficiently. First, we investigate the tradeoffs in using different compression methods to reduce the network traffic of checkpoint replication in a HA system. We evaluate gzip, delta and similarity compressions based on metrics that are specifically important in a HA system, and then suggest guidelines for their selection. Next, we propose HydraVM, a storage-based HA approach that eliminates the unproductive memory reservation made in backup hosts. HydraVM maintains a recent image of a protected VM in a shared storage by taking and consolidating incremental VM checkpoints. When a failure occurs, HydraVM quickly resumes the execution of a failed VM by loading a small amount of essential VM state from the storage. As the VM executes, the VM state not yet loaded is supplied on-demand. Finally, we propose application-assisted live migration, which skips transfer of VM memory that need not be migrated to execute running applications at the destination. We develop a generic framework for the proposed approach, and then use the framework to build JAVMM, a system that migrates VMs running Java applications skipping transfer of garbage in Java memory. Our evaluation results show that compared to Xen live migration, which is agnostic of running applications, JAVMM can reduce the completion time, network traffic and application downtime caused by Java VM migration, all by up to over 90%.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111575/1/karenhou_1.pd

    Doctor of Philosophy

    Get PDF
    dissertationA modern software system is a composition of parts that are themselves highly complex: operating systems, middleware, libraries, servers, and so on. In principle, compositionality of interfaces means that we can understand any given module independently of the internal workings of other parts. In practice, however, abstractions are leaky, and with every generation, modern software systems grow in complexity. Traditional ways of understanding failures, explaining anomalous executions, and analyzing performance are reaching their limits in the face of emergent behavior, unrepeatability, cross-component execution, software aging, and adversarial changes to the system at run time. Deterministic systems analysis has a potential to change the way we analyze and debug software systems. Recorded once, the execution of the system becomes an independent artifact, which can be analyzed offline. The availability of the complete system state, the guaranteed behavior of re-execution, and the absence of limitations on the run-time complexity of analysis collectively enable the deep, iterative, and automatic exploration of the dynamic properties of the system. This work creates a foundation for making deterministic replay a ubiquitous system analysis tool. It defines design and engineering principles for building fast and practical replay machines capable of capturing complete execution of the entire operating system with an overhead of several percents, on a realistic workload, and with minimal installation costs. To enable an intuitive interface of constructing replay analysis tools, this work implements a powerful virtual machine introspection layer that enables an analysis algorithm to be programmed against the state of the recorded system through familiar terms of source-level variable and type names. To support performance analysis, the replay engine provides a faithful performance model of the original execution during replay

    Asynchronous Snapshots of Actor Systems for Latency-Sensitive Applications

    Get PDF
    The actor model is popular for many types of server applications. Efficient snapshotting of applications is crucial in the deployment of pre-initialized applications or moving running applications to different machines, e.g for debugging purposes. A key issue is that snapshotting blocks all other operations. In modern latency-sensitive applications, stopping the application to persist its state needs to be avoided, because users may not tolerate the increased request latency. In order to minimize the impact of snapshotting on request latency, our approach persists the application’s state asynchronously by capturing partial heaps, completing snapshots step by step. Additionally, our solution is transparent and supports arbitrary object graphs. We prototyped our snapshotting approach on top of the Truffle/Graal platform and evaluated it with the Savina benchmarks and the Acme Air microservice application. When performing a snapshot every thousand Acme Air requests, the number of slow requests ( 0.007% of all requests) with latency above 100ms increases by 5.43%. Our Savina microbenchmark results detail how different utilization patterns impact snapshotting cost. To the best of our knowledge, this is the first system that enables asynchronous snapshotting of actor applications, i.e. without stop-the-world synchronization, and thereby minimizes the impact on latency. We thus believe it enables new deployment and debugging options for actor systems

    Estudo sobre processamento maciçamente paralelo na internet

    Get PDF
    Orientador: Marco Aurélio Amaral HenriquesTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoResumo: Este trabalho estuda a possibilidade de aproveitar o poder de processamento agregado dos computadores conectados pela Internet para resolver problemas de grande porte. O trabalho apresenta um estudo do problema tanto do ponto de vista teórico quanto prático. Desde o ponto de vista teórico estudam-se as características das aplicações paralelas que podem tirar proveito de um ambiente computacional com um grande número de computadores heterogêneos fracamente acoplados. Desde o ponto de vista prático estudam-se os problemas fundamentais a serem resolvidos para se construir um computador paralelo virtual com estas características e propõem-se soluções para alguns dos mais importantes como balanceamento de carga e tolerância a falhas. Os resultados obtidos indicam que é possível construir um computador paralelo virtual robusto, escalável e tolerante a falhas e obter bons resultados na execução de aplicações com alta razão computação/comunicaçãoAbstract: This thesis explores the possibility of using the aggregated processing power of computers connected by the Internet to solve large problems. The issue is studied both from the theoretical and practical point of views. From the theoretical perspective this work studies the characteristics that parallel applications should have to be able to exploit an environment with a large, weakly connected set of computers. From the practical perspective the thesis indicates the fundamental problems to be solved in order to construct a large parallel virtual computer, and proposes solutions to some of the most important of them, such as load balancing and fault tolerance. The results obtained so far indicate that it is possible to construct a robust, scalable and fault tolerant parallel virtual computer and use it to execute applications with high computing/communication ratioDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric

    Performance evaluation of VM-level record-and-replay techniques and applications

    Get PDF
    Virtual machine level record and replay can be used for complex system debugging and analysis, fault-tolerance replication and forensic analysis. Previous work on performance evaluation of RnR frameworks are not complete enough due to their narrow focuses. RnR related projects either focus on performance evaluation of plain record and replay mechanisms or specifically target the effectiveness of the functionality RnR supports. In order to identify the performance bottlenecks in the complicated RnR system and its various applications, this thesis conducts a thorough evaluation and analysis on 3 different modes of RnR, that is, record, replay with checkpointing and replay with VMI analysis. Both RnR system developer and users can benefit from our work. With our evaluation results, system developer can propose more efficient design accordingly, and RnR users can configure the system properly to achieve expected performance

    SimuBoost: Scalable Parallelization of Functional System Simulation

    Get PDF
    Für das Sammeln detaillierter Laufzeitinformationen, wie Speicherzugriffsmustern, wird in der Betriebssystem- und Sicherheitsforschung häufig auf die funktionale Systemsimulation zurückgegriffen. Der Simulator führt dabei die zu untersuchende Arbeitslast in einer virtuellen Maschine (VM) aus, indem er schrittweise Instruktionen interpretiert oder derart übersetzt, sodass diese auf dem Zustand der VM arbeiten. Dieser Prozess ermöglicht es, eine umfangreiche Instrumentierung durchzuführen und so an Informationen zum Laufzeitverhalten zu gelangen, die auf einer physischen Maschine nicht zugänglich sind. Obwohl die funktionale Systemsimulation als mächtiges Werkzeug gilt, stellt die durch die Interpretation oder Übersetzung resultierende immense Ausführungsverlangsamung eine substanzielle Einschränkung des Verfahrens dar. Im Vergleich zu einer nativen Ausführung messen wir für QEMU eine 30-fache Verlangsamung, wobei die Aufzeichnung von Speicherzugriffen diesen Faktor verdoppelt. Mit Simulatoren, die umfangreichere Instrumentierungsmöglichkeiten mitbringen als QEMU, kann die Verlangsamung um eine Größenordnung höher ausfallen. Dies macht die funktionale Simulation für lang laufende, vernetzte oder interaktive Arbeitslasten uninteressant. Darüber hinaus erzeugt die Verlangsamung ein unrealistisches Zeitverhalten, sobald Aktivitäten außerhalb der VM (z. B. Ein-/Ausgabe) involviert sind. In dieser Arbeit stellen wir SimuBoost vor, eine Methode zur drastischen Beschleunigung funktionaler Systemsimulation. SimuBoost führt die zu untersuchende Arbeitslast zunächst in einer schnellen hardwaregestützten virtuellen Maschine aus. Dies ermöglicht volle Interaktivität mit Benutzern und Netzwerkgeräten. Während der Ausführung erstellt SimuBoost periodisch Abbilder der VM (engl. Checkpoints). Diese dienen als Ausgangspunkt für eine parallele Simulation, bei der jedes Intervall unabhängig simuliert und analysiert wird. Eine heterogene deterministische Wiederholung (engl. heterogeneous deterministic Replay) garantiert, dass in dieser Phase die vorherige hardwaregestützte Ausführung jedes Intervalls exakt reproduziert wird, einschließlich Interaktionen und realistischem Zeitverhalten. Unser Prototyp ist in der Lage, die Laufzeit einer funktionalen Systemsimulation deutlich zu reduzieren. Während mit herkömmlichen Verfahren für die Simulation des Bauprozesses eines modernen Linux über 5 Stunden benötigt werden, schließt SimuBoost die Simulation in nur 15 Minuten ab. Dies sind lediglich 16% mehr Zeit, als der Bau in einer schnellen hardwaregestützten VM in Anspruch nimmt. SimuBoost ist imstande, diese Geschwindigkeit auch bei voller Instrumentierung zur Aufzeichnung von Speicherzugriffen beizubehalten. Die vorliegende Arbeit ist das erste Projekt, welches das Konzept der Partitionierung und Parallelisierung der Ausführungszeit auf die interaktive Systemvirtualisierung in einer Weise anwendet, die eine sofortige parallele funktionale Simulation gestattet. Wir ergänzen die praktische Umsetzung mit einem mathematischen Modell zur formalen Beschreibung der Beschleunigungseigenschaften. Dies erlaubt es, für ein gegebenes Szenario die voraussichtliche parallele Simulationszeit zu prognostizieren und gibt eine Orientierung zur Wahl der optimalen Intervalllänge. Im Gegensatz zu bisherigen Arbeiten legt SimuBoost einen starken Fokus auf die Skalierbarkeit über die Grenzen eines einzelnen physischen Systems hinaus. Ein zentraler Schlüssel hierzu ist der Einsatz moderner Checkpointing-Technologien. Im Rahmen dieser Arbeit präsentieren wir zwei neuartige Methoden zur effizienten und effektiven Kompression von periodischen Systemabbildern
    corecore