1,514 research outputs found

    SIM-DSP: A DSP-Enhanced CAD Platform for Signal Integrity Macromodeling and Simulation

    Get PDF
    Macromodeling-Simulation process for signal integrity verifications has become necessary for the high speed circuit system design. This paper aims to introduce a “VLSI Signal Integrity Macromodeling and Simulation via Digital Signal Processing Techniques” framework (known as SIM-DSP framework), which applies digital signal processing techniques to facilitate the SI verification process in the pre-layout design phase. Core identification modules and peripheral (pre-/post-)processing modules have been developed and assembled to form a verification flow. In particular, a single-step discrete cosine transform truncation (DCTT) module has been developed for modeling-simulation process. In DCTT, the response modeling problem is classified as a signal compression problem, wherein the system response can be represented by a truncated set of non-pole based DCT bases, and error can be analyzed through Parseval’s theorem. Practical examples are given to show the applicability of our proposed framework

    Study on high Performance and Effective Watermarking Scheme using Hybrid Transform (DCT-DWT)

    Get PDF
    Nowadays healthcare infrastructure depends on Hospital Information Systems (HIS), Radiology Information Systems (RIS),Picture archiving and Communication Systems (PACS) as these provide new ways to store, access and distribute medical data . It eliminates the security risk. Conversely, these developments have introduced new risks for unsuitable deployment of medical information flowing in open networks, provided the effortlessness with which digital content can be manipulated. It is renowned that the integrity and confidentiality of medical data is a serious topic for ethical and legal reasons. Medical images need to be kept intact in any condition and prior to any operation as well need to be checked for integrity and verification. Watermarking is a budding technology that is capable of assisting this aim. In recent times, frequency domain watermarking algorithms have gained immense importance due to their widespread use. Subsequently, the watermark embedding and extraction are performed in frequency domain using the presented scheme. The proposed watermarking scheme, the watermark extraction compared with the original image for calculating SSIM.The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results

    Printed document integrity verification using barcode

    Get PDF
    Printed documents are still relevant in our daily life and information in it must be protected from threats and attacks such as forgery, falsification or unauthorized modification. Such threats make the document lose its integrity and authenticity. There are several techniques that have been proposed and used to ensure authenticity and originality of printed documents. But some of the techniques are not suitable for public use due to its complexity, hard to obtain special materials to secure the document and expensive. This paper discuss several techniques for printed document security such as watermarking and barcode as well as the usability of two dimensional barcode in document authentication and data compression with the barcode. A conceptual solution that are simple and efficient to secure the integrity and document sender's authenticity is proposed that uses two dimensional barcode to carry integrity and authenticity information in the document. The information stored in the barcode contains digital signature that provides sender's authenticity and hash value that can ensure the integrity of the printed document

    Intensifying the Security of Multiomodal Biometric Authentication System using Watermarking

    Get PDF
    In Multimodal biometrics system two or more biometric attributes are combined which makes it far more secure than unimodal system as it nullifies all the vulnerabilities of it. But with the prompt ontogenesis of information technology, even the biometric data is not secure. There is one such technique that is implemented to secure the biometric data from inadvertent or deliberate attacks is known as Digital watermarking. This paper postulate an approach that is devise in both the directions of enlarging the security through watermarking technique and improving the efficiency of biometric identification system by going multimodal. Three biometric traits are consider in this paper two of them are physical traits i.e. ; face, fingerprint and one is behavioral trait (signature).The biometric traits are initially metamorphose using Discrete Wavelet and Discrete Cosine Transformation and then watermarked using Singular Value Decomposition. Scheme depiction and presented results rationalize the effectiveness of the scheme

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    Quaternion-based Encryption/Decryption of Audio Signal Using Digital Image as Variable Key

    Get PDF
    With the rapid growth of communication technology, cryptography plays a significant role in securing and verification of information exchanged via public communication channels.   The current paper introduces a novel method for encrypting/decrypting audio signal using a selected digital image as a complicated key and cover for audio signal.  Each sample of the audio signal is combined with the values of the three color components of a pixel fetched from the cover image yielding a quaternion number.   The absolute value of this quaternion number is then transmitted and when received, the original value of the audio sample can be extracted using simple quaternion mathematics. A second level of complexity can be added to this approach by applying one of the well-known cryptographic techniques (symmetric or asymmetric).   The suggested approach is implemented using Matlab simulation software and the generated audio signal is compared with the original one using some performance metrics.  The obtained results show that the proposed approach is robust and more secure against cryptanalysis attacks

    A HIGH SPEED VLSI ARCHITECTURE FOR DIGITAL SPEECH WATERMARKING WITH COMPRESSION

    Get PDF
    The need to provide a copy right protection on digital watermarking to multimedia data like speech, image or video is rapidly increasing with an intensification in the application in these areas. Digital watermarking has received a lot of attention in the past few years. A hardware system based solely on DSP processors are fast but may require more area, cost or power if the target application requires a large amount of parallel processing. An FPGA co-processor can provide as many as 550 parallel multiply and accumulate operations on a single device, but FPGAs excel at processing large amounts of data in parallel, as they are not optimized as processors for tasks such as periodic coefficient updates, decision- making control tasks. Combination of both the FPGA and DSP processor delivers an attractive solution for a wide range of applications. A hardware implementation of digital speech watermarking combined with speech compression, encryption on heterogeneous platform is made in this paper. It is observed that the proposed architecture is able to attain high speed while utilizing optimal resources in terms of area

    Non-Facial Video Spatiotemporal Forensic Analysis Using Deep Learning Techniques

    Get PDF
    Digital content manipulation software is working as a boon for people to edit recorded video or audio content. To prevent the unethical use of such readily available altering tools, digital multimedia forensics is becoming increasingly important. Hence, this study aims to identify whether the video and audio of the given digital content are fake or real. For temporal video forgery detection, the convolutional 3D layers are used to build a model which can identify temporal forgeries with an average accuracy of 85% on the validation dataset. Also, the identification of audio forgery, using a ResNet-34 pre-trained model and the transfer learning approach, has been achieved. The proposed model achieves an accuracy of 99% with 0.3% validation loss on the validation part of the logical access dataset, which is better than earlier models in the range of 90-95% accuracy on the validation set

    Development of variable voltage variable frequency drive system for induction motor speed control

    Get PDF
    This project describes the development of a Variable Voltage Variable Frequency (VVVF) system that controls the speed of Induction Motor (IM) at specific speed. Texas Instrument C2000 Microcontroller (TMS320F28335) has been used in this project as the interface between the control design with the IM. The Texas Instrument microcontroller has been combined with the MATLAB/Simulink and the VVVF system as the communication interface for processing the speed control system. The combination between power electronic circuits and microcontroller along with variable voltage variable frequency (VVVF) technique is able to control the target speed of IM. The target value of VVVF is implemented inside Lookup table and has been combined with the Proportional Integral (PI) speed control that generates the signal into the sinusoidal pulse width modulation (SPWM) for inverter operation. The SPWM signal is produced from the microcontroller with the instruction from MATLAB/Simulink, where the controller performs the output of the motor speed. The PI speed control receives the output of a closed loop feedback system from the motor speed and the error signal is reduced to achieve the value of desired speed reference. In the conclusion, the VVVF closed loop system is very useful to control the desired speed of motor at different variable voltage and variable frequency value. As collected for the results, its show, the VVVF with PI speed control can achieve the actual speed for the IM at 1297rpm and 1499rpm when the reference speeds have been set at 1300rpm and 1500rpm respectively. At the end it can be concluded that the VVVF combined with microcontroller have created an ecosystem for speed control that have achieved the objectives
    • …
    corecore