522 research outputs found

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Blockchain-Empowered Decentralized Storage in Air-to-Ground Industrial Networks

    Get PDF
    Blockchain has created a revolution in digital networking by using distributed storage, cryptographic algorithms, and smart contracts. Many areas are benefiting from this technology, including data integrity and security, as well as authentication and authorization. Internet of Things (IoTs) networks often suffers from such security issues, which is slowing down wide-scale adoption. In this paper, we describe the employing of blockchain technology to construct a decentralized platform for storing and trading information in the air-to-ground IoT heterogeneous network. To allow both air and ground sensors to participate in the decentralized network, we design a mutual-benefit consensus process to create uneven equilibrium distributions of resources among the participants. We use a Cournot model to optimize the active density factor set in the heterogeneous air network and then employ a Nash equilibrium to balance the number of ground sensors, which is influenced by the achievable average downlink rate between the air sensors and the ground supporters. Finally, we provide numerical results to demonstrate the beneficial properties of the proposed consensus process for air-to-ground networks and show the maximum active sensor's density utilization of air networks to achieve a high quality of service

    Blockchain-empowered decentralized storage in air-to-ground industrial networks

    Get PDF
    Blockchain has created a revolution in digital networking by using distributed storage, cryptographic algorithms, and smart contracts. Many areas are benefiting from this technology, including data integrity and security, as well as authentication and authorization. Internet of Things (IoTs) networks often suffers from such security issues, which is slowing down wide-scale adoption. In this paper, we describe the employing of blockchain technology to construct a decentralized platform for storing and trading information in the air-to-ground IoT heterogeneous network. To allow both air and ground sensors to participate in the decentralized network, we design a mutual-benefit consensus process to create uneven equilibrium distributions of resources among the participants. We use a Cournot model to optimize the active density factor set in the heterogeneous air network and then employ a Nash equilibrium to balance the number of ground sensors, which is influenced by the achievable average downlink rate between the air sensors and the ground supporters. Finally, we provide numerical results to demonstrate the beneficial properties of the proposed consensus process for air-to-ground networks and show the maximum active sensor's density utilization of air networks to achieve a high quality of service

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    6G wireless systems : a vision, architectural elements, and future directions

    Get PDF
    Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE
    • …
    corecore