41,004 research outputs found

    Algorithmic Aspects of Switch Cographs

    Full text link
    This paper introduces the notion of involution module, the first generalization of the modular decomposition of 2-structure which has a unique linear-sized decomposition tree. We derive an O(n^2) decomposition algorithm and we take advantage of the involution modular decomposition tree to state several algorithmic results. Cographs are the graphs that are totally decomposable w.r.t modular decomposition. In a similar way, we introduce the class of switch cographs, the class of graphs that are totally decomposable w.r.t involution modular decomposition. This class generalizes the class of cographs and is exactly the class of (Bull, Gem, Co-Gem, C_5)-free graphs. We use our new decomposition tool to design three practical algorithms for the maximum cut, vertex cover and vertex separator problems. The complexity of these problems was still unknown for this class of graphs. This paper also improves the complexity of the maximum clique, the maximum independant set, the chromatic number and the maximum clique cover problems by giving efficient algorithms, thanks to the decomposition tree. Eventually, we show that this class of graphs has Clique-Width at most 4 and that a Clique-Width expression can be computed in linear time

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Algorithmic Aspects of a General Modular Decomposition Theory

    Get PDF
    A new general decomposition theory inspired from modular graph decomposition is presented. This helps unifying modular decomposition on different structures, including (but not restricted to) graphs. Moreover, even in the case of graphs, the terminology ``module'' not only captures the classical graph modules but also allows to handle 2-connected components, star-cutsets, and other vertex subsets. The main result is that most of the nice algorithmic tools developed for modular decomposition of graphs still apply efficiently on our generalisation of modules. Besides, when an essential axiom is satisfied, almost all the important properties can be retrieved. For this case, an algorithm given by Ehrenfeucht, Gabow, McConnell and Sullivan 1994 is generalised and yields a very efficient solution to the associated decomposition problem
    corecore