1,235 research outputs found

    On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

    Full text link
    We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a one-pass deterministic online algorithm is 1/21/2, which is achieved by any greedy algorithm. D\"urr et al. recently presented a 22-pass algorithm called Category-Advice that achieves approximation ratio 3/53/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the kk-pass Category-Advice algorithm for all k≥1k \ge 1, and show that the approximation ratio converges to the inverse of the golden ratio 2/(1+5)≈0.6182/(1+\sqrt{5}) \approx 0.618 as kk goes to infinity. The convergence is extremely fast --- the 55-pass Category-Advice algorithm is already within 0.01%0.01\% of the inverse of the golden ratio. We then consider a natural greedy algorithm in the online stochastic IID model---MinDegree. This algorithm is an online version of a well-known and extensively studied offline algorithm MinGreedy. We show that MinDegree cannot achieve an approximation ratio better than 1−1/e1-1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek, we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model

    ShapeFit and ShapeKick for Robust, Scalable Structure from Motion

    Full text link
    We introduce a new method for location recovery from pair-wise directions that leverages an efficient convex program that comes with exact recovery guarantees, even in the presence of adversarial outliers. When pairwise directions represent scaled relative positions between pairs of views (estimated for instance with epipolar geometry) our method can be used for location recovery, that is the determination of relative pose up to a single unknown scale. For this task, our method yields performance comparable to the state-of-the-art with an order of magnitude speed-up. Our proposed numerical framework is flexible in that it accommodates other approaches to location recovery and can be used to speed up other methods. These properties are demonstrated by extensively testing against state-of-the-art methods for location recovery on 13 large, irregular collections of images of real scenes in addition to simulated data with ground truth

    Matroid Bandits: Fast Combinatorial Optimization with Learning

    Full text link
    A matroid is a notion of independence in combinatorial optimization which is closely related to computational efficiency. In particular, it is well known that the maximum of a constrained modular function can be found greedily if and only if the constraints are associated with a matroid. In this paper, we bring together the ideas of bandits and matroids, and propose a new class of combinatorial bandits, matroid bandits. The objective in these problems is to learn how to maximize a modular function on a matroid. This function is stochastic and initially unknown. We propose a practical algorithm for solving our problem, Optimistic Matroid Maximization (OMM); and prove two upper bounds, gap-dependent and gap-free, on its regret. Both bounds are sublinear in time and at most linear in all other quantities of interest. The gap-dependent upper bound is tight and we prove a matching lower bound on a partition matroid bandit. Finally, we evaluate our method on three real-world problems and show that it is practical
    • …
    corecore