59 research outputs found

    Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks

    Full text link
    Tight estimation of the Lipschitz constant for deep neural networks (DNNs) is useful in many applications ranging from robustness certification of classifiers to stability analysis of closed-loop systems with reinforcement learning controllers. Existing methods in the literature for estimating the Lipschitz constant suffer from either lack of accuracy or poor scalability. In this paper, we present a convex optimization framework to compute guaranteed upper bounds on the Lipschitz constant of DNNs both accurately and efficiently. Our main idea is to interpret activation functions as gradients of convex potential functions. Hence, they satisfy certain properties that can be described by quadratic constraints. This particular description allows us to pose the Lipschitz constant estimation problem as a semidefinite program (SDP). The resulting SDP can be adapted to increase either the estimation accuracy (by capturing the interaction between activation functions of different layers) or scalability (by decomposition and parallel implementation). We illustrate the utility of our approach with a variety of experiments on randomly generated networks and on classifiers trained on the MNIST and Iris datasets. In particular, we experimentally demonstrate that our Lipschitz bounds are the most accurate compared to those in the literature. We also study the impact of adversarial training methods on the Lipschitz bounds of the resulting classifiers and show that our bounds can be used to efficiently provide robustness guarantees

    CLIP: Cheap Lipschitz Training of Neural Networks

    Full text link
    Despite the large success of deep neural networks (DNN) in recent years, most neural networks still lack mathematical guarantees in terms of stability. For instance, DNNs are vulnerable to small or even imperceptible input perturbations, so called adversarial examples, that can cause false predictions. This instability can have severe consequences in applications which influence the health and safety of humans, e.g., biomedical imaging or autonomous driving. While bounding the Lipschitz constant of a neural network improves stability, most methods rely on restricting the Lipschitz constants of each layer which gives a poor bound for the actual Lipschitz constant. In this paper we investigate a variational regularization method named CLIP for controlling the Lipschitz constant of a neural network, which can easily be integrated into the training procedure. We mathematically analyze the proposed model, in particular discussing the impact of the chosen regularization parameter on the output of the network. Finally, we numerically evaluate our method on both a nonlinear regression problem and the MNIST and Fashion-MNIST classification databases, and compare our results with a weight regularization approach.Comment: 12 pages, 2 figures, accepted at SSVM 202

    Recurrent Equilibrium Networks: Flexible Dynamic Models with Guaranteed Stability and Robustness

    Full text link
    This paper introduces recurrent equilibrium networks (RENs), a new class of nonlinear dynamical models for applications in machine learning, system identification and control. The new model class has ``built in'' guarantees of stability and robustness: all models in the class are contracting - a strong form of nonlinear stability - and models can satisfy prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds and incremental passivity. RENs are otherwise very flexible: they can represent all stable linear systems, all previously-known sets of contracting recurrent neural networks and echo state networks, all deep feedforward neural networks, and all stable Wiener/Hammerstein models. RENs are parameterized directly by a vector in R^N, i.e. stability and robustness are ensured without parameter constraints, which simplifies learning since generic methods for unconstrained optimization can be used. The performance and robustness of the new model set is evaluated on benchmark nonlinear system identification problems, and the paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.Comment: Journal submission, extended version of conference paper (v1 of this arxiv preprint

    DeepOPF+: A Deep Neural Network Approach for DC Optimal Power Flow for Ensuring Feasibility

    Full text link
    Deep Neural Networks (DNNs) approaches for the Optimal Power Flow (OPF) problem received considerable attention recently. A key challenge of these approaches lies in ensuring the feasibility of the predicted solutions to physical system constraints. Due to the inherent approximation errors, the solutions predicted by DNNs may violate the operating constraints, e.g., the transmission line capacities, limiting their applicability in practice. To address this challenge, we develop DeepOPF+ as a DNN approach based on the so-called "preventive" framework. Specifically, we calibrate the generation and transmission line limits used in the DNN training, thereby anticipating approximation errors and ensuring that the resulting predicted solutions remain feasible. We theoretically characterize the calibration magnitude necessary for ensuring universal feasibility. Our DeepOPF+ approach improves over existing DNN-based schemes in that it ensures feasibility and achieves a consistent speed up performance in both light-load and heavy-load regimes. Detailed simulation results on a range of test instances show that the proposed DeepOPF+ generates 100% feasible solutions with minor optimality loss. Meanwhile, it achieves a computational speedup of two orders of magnitude compared to state-of-the-art solvers.Comment: 7 pages, SmarGridComm202
    • …
    corecore