12 research outputs found

    On Weighted Low-Rank Approximation

    Full text link
    Our main interest is the low-rank approximation of a matrix in R^m.n under a weighted Frobenius norm. This norm associates a weight to each of the (m x n) matrix entries. We conjecture that the number of approximations is at most min(m, n). We also investigate how the approximations depend on the weight-values.Comment: 13 page

    Projective Bundle Adjustment from Arbitrary Initialization Using the Variable Projection Method

    Get PDF
    Bundle adjustment is used in structure-from-motion pipelines as final refinement stage requiring a sufficiently good initialization to reach a useful local mininum. Starting from an arbitrary initialization almost always gets trapped in a poor minimum. In this work we aim to obtain an initialization-free approach which returns global minima from a large proportion of purely random starting points. Our key inspiration lies in the success of the Variable Projection (VarPro) method for affine factorization problems, which have close to 100% chance of reaching a global minimum from random initialization. We find empirically that this desirable behaviour does not directly carry over to the projective case, and we consequently design and evaluate strategies to overcome this limitation. Also, by unifying the affine and the projective camera settings, we obtain numerically better conditioned reformulations of original bundle adjustment algorithms

    Efficient algorithm for low-rank matrix factorization with missing components and performance comparison of latest algorithms

    No full text
    corecore