4,092 research outputs found

    An Empirical Comparison of Parsing Methods for Stanford Dependencies

    Full text link
    Stanford typed dependencies are a widely desired representation of natural language sentences, but parsing is one of the major computational bottlenecks in text analysis systems. In light of the evolving definition of the Stanford dependencies and developments in statistical dependency parsing algorithms, this paper revisits the question of Cer et al. (2010): what is the tradeoff between accuracy and speed in obtaining Stanford dependencies in particular? We also explore the effects of input representations on this tradeoff: part-of-speech tags, the novel use of an alternative dependency representation as input, and distributional representaions of words. We find that direct dependency parsing is a more viable solution than it was found to be in the past. An accompanying software release can be found at: http://www.ark.cs.cmu.edu/TBSDComment: 13 pages, 2 figure

    Parsing as Reduction

    Full text link
    We reduce phrase-representation parsing to dependency parsing. Our reduction is grounded on a new intermediate representation, "head-ordered dependency trees", shown to be isomorphic to constituent trees. By encoding order information in the dependency labels, we show that any off-the-shelf, trainable dependency parser can be used to produce constituents. When this parser is non-projective, we can perform discontinuous parsing in a very natural manner. Despite the simplicity of our approach, experiments show that the resulting parsers are on par with strong baselines, such as the Berkeley parser for English and the best single system in the SPMRL-2014 shared task. Results are particularly striking for discontinuous parsing of German, where we surpass the current state of the art by a wide margin

    Unsupervised Dependency Parsing: Let's Use Supervised Parsers

    Full text link
    We present a self-training approach to unsupervised dependency parsing that reuses existing supervised and unsupervised parsing algorithms. Our approach, called `iterated reranking' (IR), starts with dependency trees generated by an unsupervised parser, and iteratively improves these trees using the richer probability models used in supervised parsing that are in turn trained on these trees. Our system achieves 1.8% accuracy higher than the state-of-the-part parser of Spitkovsky et al. (2013) on the WSJ corpus.Comment: 11 page

    DepAnn - An Annotation Tool for Dependency Treebanks

    Full text link
    DepAnn is an interactive annotation tool for dependency treebanks, providing both graphical and text-based annotation interfaces. The tool is aimed for semi-automatic creation of treebanks. It aids the manual inspection and correction of automatically created parses, making the annotation process faster and less error-prone. A novel feature of the tool is that it enables the user to view outputs from several parsers as the basis for creating the final tree to be saved to the treebank. DepAnn uses TIGER-XML, an XML-based general encoding format for both, representing the parser outputs and saving the annotated treebank. The tool includes an automatic consistency checker for sentence structures. In addition, the tool enables users to build structures manually, add comments on the annotations, modify the tagsets, and mark sentences for further revision

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Dependency parsing of Turkish

    Get PDF
    The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, poses interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical representations called inflectional groups, rather than word forms, as the basic parsing units improves parsing accuracy. We compare two different parsing methods, one based on a probabilistic model with beam search, the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of parsing method.We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank
    corecore