1,667 research outputs found

    SLT-Resolution for the Well-Founded Semantics

    Full text link
    Global SLS-resolution and SLG-resolution are two representative mechanisms for top-down evaluation of the well-founded semantics of general logic programs. Global SLS-resolution is linear for query evaluation but suffers from infinite loops and redundant computations. In contrast, SLG-resolution resolves infinite loops and redundant computations by means of tabling, but it is not linear. The principal disadvantage of a non-linear approach is that it cannot be implemented using a simple, efficient stack-based memory structure nor can it be easily extended to handle some strictly sequential operators such as cuts in Prolog. In this paper, we present a linear tabling method, called SLT-resolution, for top-down evaluation of the well-founded semantics. SLT-resolution is a substantial extension of SLDNF-resolution with tabling. Its main features include: (1) It resolves infinite loops and redundant computations while preserving the linearity. (2) It is terminating, and sound and complete w.r.t. the well-founded semantics for programs with the bounded-term-size property with non-floundering queries. Its time complexity is comparable with SLG-resolution and polynomial for function-free logic programs. (3) Because of its linearity for query evaluation, SLT-resolution bridges the gap between the well-founded semantics and standard Prolog implementation techniques. It can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: Slight modificatio

    Idempotent I/O for safe time travel

    Full text link
    Debuggers for logic programming languages have traditionally had a capability most other debuggers did not: the ability to jump back to a previous state of the program, effectively travelling back in time in the history of the computation. This ``retry'' capability is very useful, allowing programmers to examine in detail a part of the computation that they previously stepped over. Unfortunately, it also creates a problem: while the debugger may be able to restore the previous values of variables, it cannot restore the part of the program's state that is affected by I/O operations. If the part of the computation being jumped back over performs I/O, then the program will perform these I/O operations twice, which will result in unwanted effects ranging from the benign (e.g. output appearing twice) to the fatal (e.g. trying to close an already closed file). We present a simple mechanism for ensuring that every I/O action called for by the program is executed at most once, even if the programmer asks the debugger to travel back in time from after the action to before the action. The overhead of this mechanism is low enough and can be controlled well enough to make it practical to use it to debug computations that do significant amounts of I/O.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902
    • …
    corecore