4 research outputs found

    Language Modeling with Power Low Rank Ensembles

    Full text link
    We present power low rank ensembles (PLRE), a flexible framework for n-gram language modeling where ensembles of low rank matrices and tensors are used to obtain smoothed probability estimates of words in context. Our method can be understood as a generalization of n-gram modeling to non-integer n, and includes standard techniques such as absolute discounting and Kneser-Ney smoothing as special cases. PLRE training is efficient and our approach outperforms state-of-the-art modified Kneser Ney baselines in terms of perplexity on large corpora as well as on BLEU score in a downstream machine translation task

    Efficient subsampling for training complex language models

    No full text
    We propose an efficient way to train maximum entropy language models (MELM) and neural network language models (NNLM). The advantage of the proposed method comes from a more robust and efficient subsampling technique. The original multi-class language modeling problem is transformed into a set of binary problems where each binary classifier predicts whether or not a particular word will occur. We show that the binarized model is as powerful as the standard model and allows us to aggressively subsample negative training examples without sacrificing predictive performance. Empirical results show that we can train MELM and NNLM at 1 % ∼ 5 % of the standard complexity with no loss in performance.
    corecore