3 research outputs found

    Efficient Structured Pruning and Architecture Searching for Group Convolution

    Full text link
    Efficient inference of Convolutional Neural Networks is a thriving topic recently. It is desirable to achieve the maximal test accuracy under given inference budget constraints when deploying a pre-trained model. Network pruning is a commonly used technique while it may produce irregular sparse models that can hardly gain actual speed-up. Group convolution is a promising pruning target due to its regular structure; however, incorporating such structure into the pruning procedure is challenging. It is because structural constraints are hard to describe and can make pruning intractable to solve. The need for configuring group convolution architecture, i.e., the number of groups, that maximises test accuracy also increases difficulty. This paper presents an efficient method to address this challenge. We formulate group convolution pruning as finding the optimal channel permutation to impose structural constraints and solve it efficiently by heuristics. We also apply local search to exploring group configuration based on estimated pruning cost to maximise test accuracy. Compared to prior work, results show that our method produces competitive group convolution models for various tasks within a shorter pruning period and enables rapid group configuration exploration subject to inference budget constraints.Comment: Published as an ICCV'19 NEUARCH workshop pape

    Collegial Ensembles

    Full text link
    Modern neural network performance typically improves as model size increases. A recent line of research on the Neural Tangent Kernel (NTK) of over-parameterized networks indicates that the improvement with size increase is a product of a better conditioned loss landscape. In this work, we investigate a form of over-parameterization achieved through ensembling, where we define collegial ensembles (CE) as the aggregation of multiple independent models with identical architectures, trained as a single model. We show that the optimization dynamics of CE simplify dramatically when the number of models in the ensemble is large, resembling the dynamics of wide models, yet scale much more favorably. We use recent theoretical results on the finite width corrections of the NTK to perform efficient architecture search in a space of finite width CE that aims to either minimize capacity, or maximize trainability under a set of constraints. The resulting ensembles can be efficiently implemented in practical architectures using group convolutions and block diagonal layers. Finally, we show how our framework can be used to analytically derive optimal group convolution modules originally found using expensive grid searches, without having to train a single model

    AutoML: A Survey of the State-of-the-Art

    Full text link
    Deep learning (DL) techniques have penetrated all aspects of our lives and brought us great convenience. However, building a high-quality DL system for a specific task highly relies on human expertise, hindering the applications of DL to more areas. Automated machine learning (AutoML) becomes a promising solution to build a DL system without human assistance, and a growing number of researchers focus on AutoML. In this paper, we provide a comprehensive and up-to-date review of the state-of-the-art (SOTA) in AutoML. First, we introduce AutoML methods according to the pipeline, covering data preparation, feature engineering, hyperparameter optimization, and neural architecture search (NAS). We focus more on NAS, as it is currently very hot sub-topic of AutoML. We summarize the performance of the representative NAS algorithms on the CIFAR-10 and ImageNet datasets and further discuss several worthy studying directions of NAS methods: one/two-stage NAS, one-shot NAS, and joint hyperparameter and architecture optimization. Finally, we discuss some open problems of the existing AutoML methods for future research.Comment: automated machine learning (AutoML), Submitted to Knowledge Based Systems for revie
    corecore