7,395 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries

    Full text link
    Deep ensembles (DE) have been successful in improving model performance by learning diverse members via the stochasticity of random initialization. While recent works have attempted to promote further diversity in DE via hyperparameters or regularizing loss functions, these methods primarily still rely on a stochastic approach to explore the hypothesis space. In this work, we present Multi-Symmetry Ensembles (MSE), a framework for constructing diverse ensembles by capturing the multiplicity of hypotheses along symmetry axes, which explore the hypothesis space beyond stochastic perturbations of model weights and hyperparameters. We leverage recent advances in contrastive representation learning to create models that separately capture opposing hypotheses of invariant and equivariant functional classes and present a simple ensembling approach to efficiently combine appropriate hypotheses for a given task. We show that MSE effectively captures the multiplicity of conflicting hypotheses that is often required in large, diverse datasets like ImageNet. As a result of their inherent diversity, MSE improves classification performance, uncertainty quantification, and generalization across a series of transfer tasks.Comment: Camera Ready Revision. ICML 202

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    An empirical investigation of the relationship between integration, dynamic capabilities and performance in supply chains

    Get PDF
    This research aimed to develop an empirical understanding of the relationships between integration, dynamic capabilities and performance in the supply chain domain, based on which, two conceptual frameworks were constructed to advance the field. The core motivation for the research was that, at the stage of writing the thesis, the combined relationship between the three concepts had not yet been examined, although their interrelationships have been studied individually. To achieve this aim, deductive and inductive reasoning logics were utilised to guide the qualitative study, which was undertaken via multiple case studies to investigate lines of enquiry that would address the research questions formulated. This is consistent with the author’s philosophical adoption of the ontology of relativism and the epistemology of constructionism, which was considered appropriate to address the research questions. Empirical data and evidence were collected, and various triangulation techniques were employed to ensure their credibility. Some key features of grounded theory coding techniques were drawn upon for data coding and analysis, generating two levels of findings. These revealed that whilst integration and dynamic capabilities were crucial in improving performance, the performance also informed the former. This reflects a cyclical and iterative approach rather than one purely based on linearity. Adopting a holistic approach towards the relationship was key in producing complementary strategies that can deliver sustainable supply chain performance. The research makes theoretical, methodological and practical contributions to the field of supply chain management. The theoretical contribution includes the development of two emerging conceptual frameworks at the micro and macro levels. The former provides greater specificity, as it allows meta-analytic evaluation of the three concepts and their dimensions, providing a detailed insight into their correlations. The latter gives a holistic view of their relationships and how they are connected, reflecting a middle-range theory that bridges theory and practice. The methodological contribution lies in presenting models that address gaps associated with the inconsistent use of terminologies in philosophical assumptions, and lack of rigor in deploying case study research methods. In terms of its practical contribution, this research offers insights that practitioners could adopt to enhance their performance. They can do so without necessarily having to forgo certain desired outcomes using targeted integrative strategies and drawing on their dynamic capabilities

    AlignDet: Aligning Pre-training and Fine-tuning in Object Detection

    Full text link
    The paradigm of large-scale pre-training followed by downstream fine-tuning has been widely employed in various object detection algorithms. In this paper, we reveal discrepancies in data, model, and task between the pre-training and fine-tuning procedure in existing practices, which implicitly limit the detector's performance, generalization ability, and convergence speed. To this end, we propose AlignDet, a unified pre-training framework that can be adapted to various existing detectors to alleviate the discrepancies. AlignDet decouples the pre-training process into two stages, i.e., image-domain and box-domain pre-training. The image-domain pre-training optimizes the detection backbone to capture holistic visual abstraction, and box-domain pre-training learns instance-level semantics and task-aware concepts to initialize the parts out of the backbone. By incorporating the self-supervised pre-trained backbones, we can pre-train all modules for various detectors in an unsupervised paradigm. As depicted in Figure 1, extensive experiments demonstrate that AlignDet can achieve significant improvements across diverse protocols, such as detection algorithm, model backbone, data setting, and training schedule. For example, AlignDet improves FCOS by 5.3 mAP, RetinaNet by 2.1 mAP, Faster R-CNN by 3.3 mAP, and DETR by 2.3 mAP under fewer epochs.Comment: Accepted by ICCV 2023. Code and Models are publicly available. Project Page: https://liming-ai.github.io/AlignDe

    Colour technologies for content production and distribution of broadcast content

    Get PDF
    The requirement of colour reproduction has long been a priority driving the development of new colour imaging systems that maximise human perceptual plausibility. This thesis explores machine learning algorithms for colour processing to assist both content production and distribution. First, this research studies colourisation technologies with practical use cases in restoration and processing of archived content. The research targets practical deployable solutions, developing a cost-effective pipeline which integrates the activity of the producer into the processing workflow. In particular, a fully automatic image colourisation paradigm using Conditional GANs is proposed to improve content generalisation and colourfulness of existing baselines. Moreover, a more conservative solution is considered by providing references to guide the system towards more accurate colour predictions. A fast-end-to-end architecture is proposed to improve existing exemplar-based image colourisation methods while decreasing the complexity and runtime. Finally, the proposed image-based methods are integrated into a video colourisation pipeline. A general framework is proposed to reduce the generation of temporal flickering or propagation of errors when such methods are applied frame-to-frame. The proposed model is jointly trained to stabilise the input video and to cluster their frames with the aim of learning scene-specific modes. Second, this research explored colour processing technologies for content distribution with the aim to effectively deliver the processed content to the broad audience. In particular, video compression is tackled by introducing a novel methodology for chroma intra prediction based on attention models. Although the proposed architecture helped to gain control over the reference samples and better understand the prediction process, the complexity of the underlying neural network significantly increased the encoding and decoding time. Therefore, aiming at efficient deployment within the latest video coding standards, this work also focused on the simplification of the proposed architecture to obtain a more compact and explainable model

    Endogenous measures for contextualising large-scale social phenomena: a corpus-based method for mediated public discourse

    Get PDF
    This work presents an interdisciplinary methodology for developing endogenous measures of group membership through analysis of pervasive linguistic patterns in public discourse. Focusing on political discourse, this work critiques the conventional approach to the study of political participation, which is premised on decontextualised, exogenous measures to characterise groups. Considering the theoretical and empirical weaknesses of decontextualised approaches to large-scale social phenomena, this work suggests that contextualisation using endogenous measures might provide a complementary perspective to mitigate such weaknesses. This work develops a sociomaterial perspective on political participation in mediated discourse as affiliatory action performed through language. While the affiliatory function of language is often performed consciously (such as statements of identity), this work is concerned with unconscious features (such as patterns in lexis and grammar). This work argues that pervasive patterns in such features that emerge through socialisation are resistant to change and manipulation, and thus might serve as endogenous measures of sociopolitical contexts, and thus of groups. In terms of method, the work takes a corpus-based approach to the analysis of data from the Twitter messaging service whereby patterns in users’ speech are examined statistically in order to trace potential community membership. The method is applied in the US state of Michigan during the second half of 2018—6 November having been the date of midterm (i.e. non-Presidential) elections in the United States. The corpus is assembled from the original posts of 5,889 users, who are nominally geolocalised to 417 municipalities. These users are clustered according to pervasive language features. Comparing the linguistic clusters according to the municipalities they represent finds that there are regular sociodemographic differentials across clusters. This is understood as an indication of social structure, suggesting that endogenous measures derived from pervasive patterns in language may indeed offer a complementary, contextualised perspective on large-scale social phenomena

    MuRAL: Multi-Scale Region-based Active Learning for Object Detection

    Full text link
    Obtaining large-scale labeled object detection dataset can be costly and time-consuming, as it involves annotating images with bounding boxes and class labels. Thus, some specialized active learning methods have been proposed to reduce the cost by selecting either coarse-grained samples or fine-grained instances from unlabeled data for labeling. However, the former approaches suffer from redundant labeling, while the latter methods generally lead to training instability and sampling bias. To address these challenges, we propose a novel approach called Multi-scale Region-based Active Learning (MuRAL) for object detection. MuRAL identifies informative regions of various scales to reduce annotation costs for well-learned objects and improve training performance. The informative region score is designed to consider both the predicted confidence of instances and the distribution of each object category, enabling our method to focus more on difficult-to-detect classes. Moreover, MuRAL employs a scale-aware selection strategy that ensures diverse regions are selected from different scales for labeling and downstream finetuning, which enhances training stability. Our proposed method surpasses all existing coarse-grained and fine-grained baselines on Cityscapes and MS COCO datasets, and demonstrates significant improvement in difficult category performance
    corecore