7 research outputs found

    Efficient Sparse Clustering of High-Dimensional Non-spherical Gaussian Mixtures

    Full text link
    We consider the problem of clustering data points in high dimensions, i.e. when the number of data points may be much smaller than the number of dimensions. Specifically, we consider a Gaussian mixture model (GMM) with non-spherical Gaussian components, where the clusters are distinguished by only a few relevant dimensions. The method we propose is a combination of a recent approach for learning parameters of a Gaussian mixture model and sparse linear discriminant analysis (LDA). In addition to cluster assignments, the method returns an estimate of the set of features relevant for clustering. Our results indicate that the sample complexity of clustering depends on the sparsity of the relevant feature set, while only scaling logarithmically with the ambient dimension. Additionally, we require much milder assumptions than existing work on clustering in high dimensions. In particular, we do not require spherical clusters nor necessitate mean separation along relevant dimensions.Comment: 11 pages, 1 figur

    Efficient Sparse Clustering of High-Dimensional Non-spherical Gaussian Mixtures

    Get PDF
    Abstract We consider the problem of clustering data points in high dimensions, i.e., when the number of data points may be much smaller than the number of dimensions. Specifically, we consider a Gaussian mixture model (GMM) with two non-spherical Gaussian components, where the clusters are distinguished by only a few relevant dimensions. The method we propose is a combination of a recent approach for learning parameters of a Gaussian mixture model and sparse linear discriminant analysis (LDA). In addition to cluster assignments, the method returns an estimate of the set of features relevant for clustering. Our results indicate that the sample complexity of clustering depends on the sparsity of the relevant feature set, while only scaling logarithmically with the ambient dimension. Further, we require much milder assumptions than existing work on clustering in high dimensions. In particular, we do not require spherical clusters nor necessitate mean separation along relevant dimensions

    Adaptive Clustering through Semidefinite Programming

    Full text link
    We analyze the clustering problem through a flexible probabilistic model that aims to identify an optimal partition on the sample X 1 , ..., X n. We perform exact clustering with high probability using a convex semidefinite estimator that interprets as a corrected, relaxed version of K-means. The estimator is analyzed through a non-asymptotic framework and showed to be optimal or near-optimal in recovering the partition. Furthermore, its performances are shown to be adaptive to the problem's effective dimension, as well as to K the unknown number of groups in this partition. We illustrate the method's performances in comparison to other classical clustering algorithms with numerical experiments on simulated data

    Detection and Feature Selection in Sparse Mixture Models

    Full text link
    We consider Gaussian mixture models in high dimensions and concentrate on the twin tasks of detection and feature selection. Under sparsity assumptions on the difference in means, we derive information bounds and establish the performance of various procedures, including the top sparse eigenvalue of the sample covariance matrix and other projection tests based on moments, such as the skewness and kurtosis tests of Malkovich and Afifi (1973), and other variants which we were better able to control under the null.Comment: 70 page

    Sharp-SSL: Selective high-dimensional axis-aligned random projections for semi-supervised learning

    Full text link
    We propose a new method for high-dimensional semi-supervised learning problems based on the careful aggregation of the results of a low-dimensional procedure applied to many axis-aligned random projections of the data. Our primary goal is to identify important variables for distinguishing between the classes; existing low-dimensional methods can then be applied for final class assignment. Motivated by a generalized Rayleigh quotient, we score projections according to the traces of the estimated whitened between-class covariance matrices on the projected data. This enables us to assign an importance weight to each variable for a given projection, and to select our signal variables by aggregating these weights over high-scoring projections. Our theory shows that the resulting Sharp-SSL algorithm is able to recover the signal coordinates with high probability when we aggregate over sufficiently many random projections and when the base procedure estimates the whitened between-class covariance matrix sufficiently well. The Gaussian EM algorithm is a natural choice as a base procedure, and we provide a new analysis of its performance in semi-supervised settings that controls the parameter estimation error in terms of the proportion of labeled data in the sample. Numerical results on both simulated data and a real colon tumor dataset support the excellent empirical performance of the method.Comment: 49 pages, 4 figure
    corecore