3 research outputs found

    A CDCL-style calculus for solving non-linear constraints

    Get PDF
    In this paper we propose a novel approach for checking satisfiability of non-linear constraints over the reals, called ksmt. The procedure is based on conflict resolution in CDCL style calculus, using a composition of symbolical and numerical methods. To deal with the non-linear components in case of conflicts we use numerically constructed restricted linearisations. This approach covers a large number of computable non-linear real functions such as polynomials, rational or trigonometrical functions and beyond. A prototypical implementation has been evaluated on several non-linear SMT-LIB examples and the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at <http://informatik.uni-trier.de/~brausse/ksmt/

    Delta-Decision Procedures for Exists-Forall Problems over the Reals

    Full text link
    Solving nonlinear SMT problems over real numbers has wide applications in robotics and AI. While significant progress is made in solving quantifier-free SMT formulas in the domain, quantified formulas have been much less investigated. We propose the first delta-complete algorithm for solving satisfiability of nonlinear SMT over real numbers with universal quantification and a wide range of nonlinear functions. Our methods combine ideas from counterexample-guided synthesis, interval constraint propagation, and local optimization. In particular, we show how special care is required in handling the interleaving of numerical and symbolic reasoning to ensure delta-completeness. In experiments, we show that the proposed algorithms can handle many new problems beyond the reach of existing SMT solvers
    corecore